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ABSTRACT 
 
 
 
 

Big data is characterized by volume and velocity [24], and recently several real-

time stream processing systems have emerged to combat this challenge. These systems 

process streams of data in real time and computational results. However, current popular 

data stream processing systems lack the ability to scale out and scale in (i.e., increase or 

decrease the number of machines or VMs allocated to the application) efficiently and 

unintrusively when requested by the user on demand. In order to scale out/in, a critical 

problem that needs to be solved is to determine which operator(s) of the stream 

processing application need to be given more resources or taken resources away from, in 

order to maximize the application throughput. We do so by presenting a novel metric 

called "Expected Throughput Percentage" (ETP). ETP takes into account not only 

congested elements of the stream processing application but also their effect on 

downstream elements and on the overall application throughput.  

Next, we show how our new system, called Stela (STream processing 

ELAsticity), incorporates ETP in its scheduling strategy. Stela enables scale out and scale 

in operations on demand, and achieves the twin goals of optimizing post-scaling 

throughput and minimizing interference to throughput during the scaling out/in. We have 

integrated the implementation of Stela into Apache Storm [27], a popular data stream 

processing system. 

We conducted experiments on Stela using a set of micro benchmark topologies as 

well as two topologies from Yahoo! Inc. Our experiment results shows Stela achieves 
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45% to 120% higher post scale throughput comparing to default Storm scheduler 

performing scale out operations, and 40% to 500% of throughput improvement 

comparing to the default scheduler during scale in stage. This work is a joint project with 

Master student Boyang Peng [1]. 
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1. INTRODUCTION	 	  
 

 

1.1 Stream Processing Systems 
 

 
In the past decade we have witnessed a revolution in data processing systems. 

Many large-scale distributed data processing systems [2-7] have evolved from single 

platform, single data source processing to handling massive datasets characterized by 

their volume, velocity and variability [24]. Systems like Hadoop have evolved and 

matured to handle huge volume of batch data [25] by adapting distributed processing 

paradigm like MapReduce [26]. However, these systems can only serve static data, which 

makes it impossible for users to retrieve computational results in real time. Furthermore, 

today’s big data that arrives at a very high rate, such as Twitter [55] feeds, server history 

logs, and high frequency trading data, which raises new challenges for systems to 

transmit, compute, and store data in real time [48].  

The demand has arisen for frameworks that allow for processing of live 

streaming data and answering queries while being requested. The development of stream 

processing systems (SPSs) can be traced back to 1960s [49]. In 1974 Gilles Kahn 

defined a parallel program schema that can be defined by a labeled nodes and edges in a 

graph, which is still widely used as data model for SPSs development today [50]. In the 

1980s dataflow and SPS became active research areas. SPSs were widely used in 
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programing language research, signal processing network and hardware design [49]. 

Before the era of big data in 21st century, the concept of stream processing has already 

been popular and frequently used in many areas such as trading systems and online 

auctions [51-52].  

One of the earliest works related to stream processing within a distributed 

framework was the FOCUS project, published in 1992 [53]. FOCUS treated the 

distributed system as consisting of concurrent asynchronous processing elements [49]. 

Meanwhile, several research projects regarding system’s task migration [54] and load 

sharing [55-56] were conducted, laying a foundation for the development of modern 

distributed stream processing systems such as Aurora [8] and Borealis [20]. 

Over the last few years, stream processing has once again become a highly 

popular topic: systems like Storm [27], System S [22], Spark Streaming [23], Heron [28] 

and many other systems [9-12] have been developed to facilitate online algorithms for 

streaming data input. For instance, Yahoo! Inc. uses a stream processing engine to 

perform for its advertisement pipeline processing, so that it can monitor ad campaigns in 

real-time. Twitter uses a similar engine to compute trending topics [27]. Other examples 

include spam detection, personalization, online recommendation and data analytics using 

real time machine learning algorithms [40].  

 

1.2 Motivation 
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Unfortunately, current stream processing systems used in industry largely lack an 

ability to seamlessly and efficiently scale the number of servers in an on-demand manner, 

while on-demand is defined by the ability to scale upon user’s requests. There are many 

use cases where shifting the size of cluster is desired. The ability to increase or decrease 

cluster size on demand without interrupting workload is critical. It helps the users to add 

hardware resources accordingly when required by scaling out, e.g., when incoming data 

rate rises. It can also help to reduce unnecessary power and resource consumption by 

scaling in, e.g., when the system is under-utilized. Without this feature, users have to be 

stop or pause the application for hardware reconfiguration. This may cause long periods 

of low or zero throughput. For instance, Storm simply supports such a request by un-

assigning all processing operators and then reassigns them in a round robin fashion to the 

new set of machines. This is not seamless as it interrupts the ongoing computation for a 

long duration, and shuts down throughput to zero. It is not efficient either as it results in 

sub-optimal throughput after the scaling is completed as our experiments show later. The 

recent published system Heron [28] has improved Storm’s architecture from multiple 

aspects. However the work has not addressed the lack of ability to scale on demand. 

In order to bridge this gap, we propose a new metric, Effective Throughput 

percentage (ETP), to measure the impact of each computational operator on entire 

application throughput. ETP takes into account not only congested elements of the 

stream processing application but also their effect on downstream elements and on the 

overall application throughput. Using ETP metric, our approach is able to determine the 

operator or machine that affect throughput the most. 
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We further present a system, Stela (STream processing ELAsticity) to enable on-

demand scaling for distributed data stream systems using ETP metric. Stela meets two 

design goals: First, it optimizes the post-scaling throughput without hardware profiling. 

Second, Stela introduces minimal interruption to the ongoing computation. For scale-

out, Stela uses ETP metric to select which operators (inside the application) are given 

more resources based on their impact to the throughput, and secondly it performs the 

scale-out operation in a way that is minimally obtrusive to the ongoing stream 

processing. Similarly, for scale in, Stela uses ETP metric to select which machine to 

remove in a way that minimizes the overall detriment to the application’s performance.  

 

1.3 Contributions Of This Thesis 
 

In this thesis we first introduce the design of our ETP metric. Then we introduce 

development of our system Stela, that performs scale out and scale in using ETP metric. 

We integrated Stela into Apache Storm. And finally we present experimental results 

using both micro-benchmark Storm applications as well as Storm applications from 

Yahoo!. Our experiments show that compared to Apache Storm’s default scheduler, 

Stela’s scale out operation reduces interruption time to a fraction as low as 12.5% and 

achieves throughput that is 45-120% higher than Storm’s. Stela’s scale in operation 

chooses the right set of servers to remove and performs 40-500% better than Storm’s 

default strategy. 

The contributions of this work are: 
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• The development of a novel metric, Expected Throughput Percentage (ETP), 

that accurately captures the “importance” of an operator towards entire 

application. 

• Integrating ETP metric into Storm to achieve maximized throughput with 

lower cost. 

• Evaluating Stela with default Storm and alternative strategies using both 

micro-benchmark topology and application used by Yahoo! in production.  
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2. RELATED WORK 
 

 
 
 

Aurora [8] was one of the earliest distributed data stream processing systems. 

Both Aurora and its successor, Borealis [20] used a technique called load shedding to 

reduce congestion in their workloads. In order to guide load shedding process, they 

constantly collected QoS information as a metric to detect throughput bottleneck. They 

also collected hardware statistics to help identify congestion caused by resource shortage. 

Different from Stela, these systems focused on load balancing of individual machines. 

Borealis used correlation-based operator distribution to maximize the correlation between 

all pairs of operators within the workflow [29]. Borealis also used ROD (resilient 

operator distribution) [30] [9] to determine the best operator distribution plan that does 

not easily become overloaded under shifting data flow. Comparing to Aurora, Borealis 

allowed queries to be revised and modified dynamically. However, to our best knowledge, 

these two systems, as well as some of the most popular distributed stream processing 

systems such as Storm [27], Samza [36], Heron [28], Spark Streaming [23] [37], 

MillWheel [47] do not currently optimize for scale out and scale in explicitly.  

Stromy [18] was a multi-tenant distributed stream processing engine that 

supported elastically scaling. Different from traditional stream processing system like 

Aurora[8] and Borealis [20], Stormy adapted Distributed Hash Table (DHT) [32], a 

technique from several distributed storage systems [33-35] into its design. Stormy used 

DHT to map queries (operators) and incoming events to the same physical location using 
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a global unique SID. The technique Stormy used for scale in and scale out is called Cloud 

Bursting. A cloud bursting leader would decide whether or not to introduce/remove nodes 

to the system based on hardware statistics of each member node. When a new machine 

was added to the system, it took a random position on the logical ring and took over 

portions of the data range of its neighbors, which might not be the best option to 

optimize application throughput. 

StreamCloud [15] [31] was a data streaming system designed to be elastic and 

scalable. StreamCloud was built on top Borealis Stream Processing Engine [9] aimed to 

support elasticity in the existing Borealis system. Similar to Stela, StreamCloud also 

adapted parallelization approach. However, StreamClouds focused on the technique to 

divide user’s query and maintaining stateful operators. The system monitored CPU usage 

for each sub-cluster and increased/decreased resources for each sub-query. Comparing to 

Stela, StreamCloud was more concerned with query-based optimization and resource 

usage for each sub-cluster/machine rather than optimized throughput for the entire 

workflow. 

System S [22] [14] [19], SPC [10] [17] (part of System S), and SPADE [13] 

(declarative stream processing engine of System S) were developed by IBM to support 

user-defined massive volumes of continuous data streams [43].  These systems detected 

workload changes by constantly monitor the peak rate of each operator. Then they 

expanded or contracted operator’s parallelism to adapt these changes. Similar to 

StreamCloud, System S also concentrated on elastically scaling in order to optimize per-

operator performance, while Stela applies novel ETP metric to the entire workflow. 
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System S, Stormy and StreamCloud were not the only stream processing systems 

that have adapted parallelization approach. Newly developed systems such as [44] and 

DRS [45] used parallelization for elasticity scaling. These systems changed operator’s 

parallelization level by QoS metrics [44] or existing models [45-46]. However, systems 

like [44] and DRS used strategies that optimized for shortest latency, while Stela targets 

at maximum throughput. More importantly, Stela targets on on-demand elasticity, which 

implies that the amount of resources to be added (or removed) is determined and 

restricted by user. This scenario is common to many use cases when users are restricted 

by their budget or has a plan to use specific amount of resources, which enforces Stela to 

choose the best operator/machine during scaling.	   

In a recent paper [18] on adaptive scheduling in Storm, the author’s presented the 

use of link-based techniques to schedule Storm topologies. By using both topology-based 

and traffic-based scheduling, the system aimed at minimizing the traffic among executors 

within same workers. Based on our research, this is only paper at this time that 

demonstrated effective scheduling techniques (e.g. using link-based scheduling 

techniques), which surpassed the performances of Storm’s default scheduler. Thus, we 

choose to compare Stela against strategies using link-based approaches on top of 

comparing against Storm’s default strategies.   
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3. DATA MODEL 
 

 
 

 
In this chapter, we introduce the system model for data stream processing 

systems in our work. This includes a brief introduction of the workflow input and the 

important concepts that apply to different types of stream processing systems in general. 

 

 

3.1 Data Stream Processing Model 
 

Data stream processing model can logically be depicted as a directed acyclic 

graph (DAG) composed by a set of vertices connected by edges. An example of data 

stream is illustrated in the Figure 1.  In this work, we define such logic graph as a 

workflow. 

            

Figure. 1 Data Stream Example 
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We further define some important concepts in data stream model as follows: 

Tuple: A tuple is the basic unit being processed within workflow. A tuple can be 

defined in predefined data type (e.g. Integer, String, etc.) or customized data type (e.g. 

user-defined class). 

 Operators:  In the workflow DAG, the vertices connected by edges are called 

operators.  An operator is a logical representation of the piece of code provided by the 

user in the workflow. Each operator can be interpreted as a “step” to execute tuples. 

Operators can have one or more input which allows it to receive tuples from upstream 

objects. Similarly, they can deliver their tuples to one or more downstream operators. An 

operator that has no parent is called a source. An operator that has no children is called a 

sink. In this work, we assume all operators are stateless: i.e. operators store no 

information from the previously processed tuples. 

 Instance: An instance (of an operator) is an instantiation of the operator’s 

processing logic and is the physical entity that executes the operator’s logic. In general, 

executors are implemented by processes or threads in order to parallelize the workload 

for an operator. For each operator, there can be one or more instances executing the 

program logic simultaneously.  

Table 1 lists definitions of theses terminologies. We also include the name of each 

terminology used in Apache Storm [27], which will be discussed later in Chapter 6.  

 

Terminology	   Definition	   Terminology	  used	  in	  Storm	  
Topology	   Logical workflow graph Topology 

 
Table 1 List of terminologies and their definitions. 
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Terminology	   Definition	   Terminology	  used	  in	  Storm	  
Tuple Basic data unit being processed Tuple 

Operator An instructional step to process 
tuples Bolt or Spout 

Source An operator that has no parent Spout 
Sink An operator that has no children Output bolt 

Instance 

An instantiation of the operator’s 
processing logic and the physical 
entity that executes the operator’s 

logic 

Executor 

 
Table 1 List of terminologies and their definitions (continued). 
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4. EXPECTED THROUGHPUT PERCENTAGE 
 

 
 
 

In this chapter, we introduce a new metric, called Expected Throughput 

Percentage (ETP). ETP estimates the effect of each congested operator of the stream 

processing application on the overall application throughput. We use ETP to determine 

which operator to give resources to (while scaling out) or take resources away from 

(while scaling in). We will first define this metric and describe the algorithm to 

computed ETP in Section 4.1 and 4.2. Later we will further illustrate computing ETP by 

an example in Section 4.3.  

 

 

4.1 Congested Operators 
 

Aiming to achieve high post-scale throughput and low throughput reduction 

during scaling, our approach consists of two parts: first, we profile the rate of tuples 

being processed by each operator. Then we create a preferential ordering of the 

operators in the workflow that determines their priority in scaling out/in. 

We consider an operator to be congested if the sum of the speeds of its input 

streams (input speed 𝑅!"#$%) is higher than the execution speed  𝑅!"!#$%!   (execution 

speed). To collect input speed and execution speed for each operator, we periodically 

records the number of tuples being processed, 𝑇!"!#$%! and the number of tuples being 
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submitted, 𝑇!"#$, within a sliding time window. For an operator that has 𝑛 parents, we 

calculate input speed and execution speed as follows: 

 

𝑅!"#$% =
𝑇!_!_!"#$!

!

𝑊   
!

!!!

 

𝑅!"!#$%! =
𝑇!"!#$%!
𝑊  

 

𝑇!_!_!"#$ is the emit rate of parent 𝑖 at time slot j and the number of time slots in a 

time window, i.e. window size, is  𝑊. 

Our approach detects congested components by Algorithm 1. All congested 

operators are stored in a data structure called CongestedMap: 

 

Algorithm 1 Detecting heavily congested operators in the topology 

1: procedure	  CONGESTIONDETECTION	  	  
2: for	  each	  Operator	  o	  ∈	  Topology	  do	  
3: 𝑅!"#$%	  ← 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑅𝑎𝑡𝑒𝑀𝑎𝑝(𝑜.𝑝𝑎𝑟𝑒𝑛𝑡);	  //summing	  of	  emit	  rate	  of	  

all	  parents	  
4: 𝑅!"!#$%! 	  ←	  ProcessingRateMap(o);	  
5: 	  if	  𝑅!!"#$/𝑅!"!#$%! 	  >	  CongestionRate	  𝛼	  then	  
6: add	  o	  to	  CongestedMap;	  	  
7: end	  if	  
8: end	  for	  	  
9: return	  CongestedMap;	  
10: end	  procedure 

 

Here an operator is considered to be congested when 𝑅!"#$% >   𝛼 ∗ 𝑅!"!#$%!. 

Here 𝛼  is the congestion rate, a user-defined variable defines the sensitivity of 
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congestion detection. We recommend users set 𝛼 to be higher than 1 to compensate for 

inaccuracies in measurement. For our experiments, we set 𝛼  to be 1.2. A higher 

congestion rate may lead to less operators being detected by filtering out operators 

whose input speed is only slightly higher than execution speed. 

 

4.2 Expected Throughput Percentage 
 

Expected Throughput Percentage (ETP) is a new metric we use to evaluate the 

impact that each operator has towards the application throughput. For any operator x, we 

define ETP of x as the percentage of the final throughput being affected by the change of 

𝑅!, the execution speed of operator x. Formally, we define ETP of operator o in a 

workflow as: 

 

𝐸𝑇𝑃! =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡!""#$%&'#(#)$!!"#$%&'()

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡!"#$%&"!
 

 

 We denote the throughput of entire workflow as 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡!"#$%&"!  and 

where 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡!"#$%&"!   is the sum of the execution speeds of all sinks in the 

workflow where x resides. To compute 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡!""#$%&'#(#)$!!"#$%&'(), which is 

defined as the effective throughput of operator 𝑥, we run the following algorithm: 
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Algorithm 2 Find ETP of operator x of the application 

1: procedure FINDETP(ProcessingRateMap) 
2: if x.child = null then 
3:         return ProcessingRateMap.get(x) //x is a sink 
4: end if 
5: SubtreeSum ← 0; 
6: for each descendant child ∈x do 
7: if child.congested = true then 
8: continue; // if the child is congested, give up the subtree rooted at that 

child 
9: else 
10: SubtreeSum+ = FINDETP(child);  
11: end if 
12: end for 
13: return SubtreeSum 
14: endprocedure 

 
 

This algorithm traverses all descendants of operator x and computes the sum of 

the execution speed of the sinks, only if the sink can be reached by one or more 

uncongested path(s). It explores the descendent substructure of operator x in depth-first 

fashion. Here we define substructure of operator x as all downstream operators that 

receive data stream previously processed by operator x. For example, if the downstream 

operators descend from operator x forms a tree. Then the substructure of operator x is the 

subtree rooted at x.  

If the algorithm encounters a congested operator, it will prune this substructure 

and consider this substructure to generate no significant on overall application 

throughput. Otherwise the algorithm will continue visiting the current explored operator’s 

children. If this process reaches an uncongested sink operator, it will consider the tuples 
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produced by this operator contribute to “effective throughput” and therefore include its 

execution speed in the ETP of operator x. 

 

 

4.3 ETP Calculation: An Example 
 

We use an example to show how to calculate ETP of an operator in an application 

workflow, as shown in Figure.2. 

         

Figure. 2 An example of stream processing application with a tree structure: Shaded 
operators are congested 

 

In this example, the execution speed for each operator is shown in the figure. The 

congested operators are shaded and we assume the congestion rate 𝛼 equals to 1, i.e. 

operators 1, 3, 4 and 6. Thus an operator is congested if the sum of its input speeds is 
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higher than the execution speed. Before we calculate the effective throughput of any 

operators, we first calculate the sum of execution speed of all sinks in the workflow, i.e. 4, 

7, 8, 9, 10, as the workflow throughput: 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡!"#$%&"! = 2000+ 1000+

1000+ 200+ 300 = 4500  𝑡𝑢𝑝𝑙𝑒𝑠/𝑠.  

To calculate the ETP of operator 3, we first determine the reachable sink 

operators for operator 3 are 7, 8, 9 and 10. Of these only operators 8 and 9 are considered 

to be the “effectively” reachable sink operators, as both of them can be reached through 

an uncongested path (through uncongested operator 5). Changing execution speed of 

operator 3 will affect the throughput of operator 7 and 8 immediately. Meanwhile, 

operators 9 and 10 will not be affected by the changes despite the fact that both operators 

are reachable sinks for operator 3. This is because operator 6 being congested suggests 

that its computational resources have become saturated. Thus, simply increasing 

execution rate of operator 3 will only make operator 6 further congested. Without 

providing extra computing resources to operator 6, the input speed for operator 9 and 10 

will remain unchanged. We ignore the subtree of operator 6 while calculating 3’s ETP as 

ETP3 = (1000 + 1000)/4500 = 44%.  

Similarly, for operator 1, operator 4, 7, 8, 9, 10 are sink operators that are 

reachable. However, none of them can be reached via an uncongested path. Thus the ETP 

of operator 1 is 0. This implies while the throughput (execution speed) of operator 1 

changes, none of the output sink will be affected. Likewise, we can calculate the ETP of 

operator 4 as 44% and the ETP of operator 6 as 11%. This result suggests when the 

execution speed of operator 4 changes, 44% of output of the application will be affected. 
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For operator 6, only 11% application output will be affected while its execution speed 

changes. 
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5. SCALE OUT AND SCALE IN 
 

 
 
 

By calculating the ETPs of operators, our approach learns the impact each 

operator has towards the application throughput. In this chapter, we further discuss how 

our system called Stela uses ETP to support scale out and scale in an on demand manner.    

 

 

5.1 Goals 
 

There are two goals that Stela aims at during its scaling process:  

1. Achieve high post-scale throughput and  

2. Minimize the interference towards the running workflow.  

In order to achieve these two goals, we use ETP metric to determine the best 

operator to parallelize and migrate to the new machine(s) during scale out operation, or 

the best machine(s) to remove during the scale in operation. Here we define scale out as 

the system’s ability to reallocate or re-arrange part of its current jobs to newly added 

machines. Similarly, we define scale in as the system’s ability to select machine(s) to 

remove from the current cluster, and reallocate or re-distributed tasks to the remaining 

machines. All scaling decisions can be made without hardware profiling. The details of 

these policies are described in the following sections.  
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5.2 Scale Out 
 

This section introduces how Stela performs a scale out operation when new 

machine(s) are added to the system. Upon receiving user’s request for scale out, we first 

determine the number of instances it can allocate to new machine(s) and prepares its 

operation by collecting the execution speed and input speed for each operator. Then it 

calculates the ETP for each congested operator and capture the percentage of total 

application throughput that the operator has impact on. Finally we iteratively select the 

“best” operator to assign more resources by increasing its parallelism level. We describe 

these details below. 

 

 

5.2.1 Load Balancing 

 

Stela first determines the amount of instances it needs to allocate to the new 

machine(s) when the scale out request is received. To ensure load balancing, Stela 

allocates new instances to the new machine(s) so that the average number of instances 

per machine remains unchanged. Assuming before scale out the number of instances in 

the application is 𝐼!!"!!"#$% and the number of machines in the cluster is 𝑀!"#!!"#$%. 

Stela determines the number of instances to allocate to each new machine as ∆𝐼 =

𝐼!"#!!"#$%/𝑀!"#!!"#$%, where ∆𝐼 is also the average number of instances per machine 

before scale out. 
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5.2.2 Iterative Assignment 

 

After determining the number of instances to be allocated to the new machine(s). 

We allocate instance slots on these machines. A list of instance slots is a data structure 

we define for each machine that stores the executors to be needs to be migrated to the 

machine. We search for all congested operators in the workflow and calculate their ETPs. 

All ETPs and the operators are stored in a data structure called CongestedMap in the 

form of key-value pairs. (See Chapter 3 for details). While assigning new instance to an 

instance slot, our approach target at the operator with highest ETP in CongestedMap and 

parallelize it by adding one more instance to the instance slot on a new machine.  

Algorithm 3 depicts the pseudocode.  

 

Algorithm 3 Stela: Scale-out 

1: procedure	  SCALE-‐OUT	  	  
2: slot	  ←	  0;	  
3: while	  slot	  <	  Ninstances	  do	  	  
4: CongestedMap	  ←	  CONGESTIONDETECTION;	  	  
5: if	  CongestedMap.empty	  =	  true	  then	  	  
6: return	  source;	  //	  none	  of	  the	  operators	  are	  congested	  	  
7: end	  if	  
8: for	  each	  operator	  o	  ∈	  CongestedMap	  do	  	  
9: ETPMap←	  FINDETP(Operator	  o);	  
10: end	  for	  
11: target	  ←	  ETPMap.max;	  
12: ExecutionRateMap.update(target);	  //update	  the	  target	  execution	  rate	  	  
13: slot++;	  
14: end	  while	  	  
15: end	  procedure	  
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This iteration repeats ∆𝐼 ∗ ∆𝑀 times where ∆𝐼 is the number of instance slots on 

a new machine and ∆𝑀  is the number of newly added machines. During each iteration 

we select a target operator to spawn a new instance that will be allocated to the new 

machine. The algorithm traverses all congested operators (via CongestedMap) and 

computes the ETP value for each operator (using the algorithm described in Chapter 3). 

Then Stela stores them in ETPMap as key-value pairs sorted by values. Finally it selects 

the operator with the highest ETP value and sets that operator as a target. If the 

CongestedMap is empty, meaning there are no operators being congested in the 

application, Stela will select one of the source operators so that the input rate of the 

entire workflow will be increased – this will increase rate of incoming tuples for all 

descendant operators of that source.  

Before the next iteration starts, Stela attempts to estimate the execution rate of 

the previously targeted operator o. It is critical to update the execution rate of the 

targeted operator since the assigning new resources to a congested operator may affect 

the input speed for all descendant operators. Thus it is important for it to estimate the 

execution speed of o and input speed for all descendants of o every iteration. Assuming 

target operator has execution speed of 𝐸! and operated by k instances, we estimate the 

execution speed of the target operator proportionally by: 𝐸′! = 𝐸! ∗ (𝑘 + 1)/𝑘. The 

intuition behind the design choice is clear: by predicting the impact of each congested 

operator towards the entire application based on the structure of the workflow, we can 

discover a combination of operators that may generate most benefit to the application by 

assigning extra resources.  
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After the algorithm updates the execution speed of the target operator, it re-runs 

Algorithm 1 for each operator in the workflow and updates CongestedMap. Then it 

recalculates the ETP for each operator in the updated CongestedMap. We call these new 

ETPs as projected ETPs, or PETPs. PETPs are estimated value of ETPs assuming extra 

resources have been granted to the operator for the current iteration. Each iteration 

selects the operator with highest ETP to assign an instance slot to accommodate a new 

instance of this operator. The processes repeats ∆𝐼 ∗ ∆𝑀 until all instance slots are 

assigned, where ∆𝐼 is the number of instance slots on a new machine and ∆𝑀  is the 

number of newly added machines. 

 

	  

5.3 Scale In 
 

In this section we describe the technique Stela uses for scale in operation using 

ETP metric. For scale in, we assume the user send the number of machines to be removed 

along with the scale in request. Different from scale out operation, Stela needs to decide 

which machine(s) to remove from the cluster and how to re-distribute the jobs resides on 

these machines. To decide this machine, Stela uses ETP to calculate the ETP of each 

machine (not just each operator). ETP of one machine is defined by the sum of ETPs of 

all executors on this machine. ETP of an executor equals to ETP of operator this executor 

belongs to. For a machine with n instances, Stela computes sum of ETP of all executors 

for this machine as: 
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𝐸𝑇𝑃𝑆𝑢𝑚 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑘 = 𝐹𝑖𝑛𝑑𝐸𝑇𝑃(𝐹𝑖𝑛𝑑𝐶𝑜𝑚𝑝(𝑡𝑖))!
!!!

   

 

For a specific instance, our approach looks up the operator that spawns this 

instance. It then invokes FindETP to find the ETP for the operator as well as the instance. 

Repeating this process for every instance, it stores the ETPSum for each machine then 

decides which machine(s) to be removed. Algorithm 4 depicts this process. 

  

Algorithm 4 Stela: Scale-out 

1: procedure	  SCALE-‐OUT	  	  
2: slot	  ←	  0;	  
3: while	  slot	  <	  Ninstances	  do	  	  
4: CongestedMap	  ←	  CONGESTIONDETECTION;	  	  
5: if	  CongestedMap.empty	  =	  true	  then	  	  
6: return	  source;	  //	  none	  of	  the	  operators	  are	  congested	  	  
7: end	  if	  
8: for	  each	  operator	  o	  ∈	  CongestedMap	  do	  	  
9: ETPMap←	  FINDETP(Operator	  o);	  
10: end	  for	  
11: target	  ←	  ETPMap.max;	  
12: ExecutionRateMap.update(target);	  //update	  the	  target	  execution	  rate	  	  
13: slot++;	  
14: end	  while	  	  
15: end	  procedure	  

 

Assuming M_scalein is the number of machines user specifies to remove. The 

algorithm traverses all machines in the cluster and construct an ETPMachineMAP that 

stores ETPSum for each machine. ETPMachineMAP is sorted by its value. Stela selects 

the top M_scalein machines with the lowest ETPSum from ETPMachineMAP, as the 
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target machine(s). We select the machine with lowest ETPSum because, according to 

our Stela metric, the executors reside on that machine will have the lowest impact on 

application throughput in total.  

Then Stela re-distributes instances from target machines to all other machines in 

a round-robin fashion in increasing order of their ETPSum. This design is beneficial in 

two ways: Distributing instances in a round-robin fashion ensures load-balancing. 

Additionally, while the total number of instances on target machine(s) cannot be evenly 

distributed to the remaining machine, prioritizing destination machine with lower 

ETPSum may introduce less intrusion to the workflow. This is the instances reside on 

machine with lower ETPSum is likely to have less impact on the application.  

 

 

5.4 Alternative Strategies 
 

Besides our scale in and scale out strategy based on ETP metric, we attempt 

several alternative topology-aware strategies for scaling out. These strategies choose 

specific operator(s) purely based their alignment in the workflow DAG. Then the chosen 

operator(s) are reallocated to the new resources in the cluster. We list these strategies in 

and their design logic in Table 2. Then we will compare the ETP-based approach against 

them in our experiment section. 
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Strategy Name 

Prioritized operator 
to access new 

resources 

Design logic 

Sink Closeness 

Operators with 
minimum number of 

hops from its sink 
operator 

Operators connected close to the sink affect 
the throughput the most 

Source Closeness 

Operators with 
minimum number of 
hops from its source 

operator 

Congested operator locate more upstream 
will affect the performance of more operators 

downstream 

Number of 
Descendants 

Operators with more 
descendants 

Operators with more descendants have 

larger effect on all operators 

Centrality 
Operators with higher 
number of in and out 

edges 

A well-connected operator has larger effect 
on the entire application than operators with 

less in and out connections 

Least Link Load Operators connected 
by lighter loaded link 

Links with low traffic implies bottleneck. 
Operators connected to lighter loaded link 

need more resources for the throughput 
improvement. 

Most Link Load Operators connected 
by heavier loaded link 

Operators connected to heavy loaded link are 
likely to be congested. 

 
Table 2: Alternative Strategies And Their Design Logic  

 
 

Among all these strategies, the two link-load based strategies have been used 

previously [18] to improve Storm’s performance. We also found Least Link Load 

strategy improves application performance the most during our experiments. Thus we 

choose Least Link Load to represent all alternative strategies listed above. This is because 
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Least Load Strategy aims to minimize the network traffic among physical machines. 

Thus most of the data transfer between instances can be done locally. In our evaluation 

section we will compare Least Link Load strategy with our ETP metric approach in terms 

of throughput performance and degree of workload interruption. 
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6. IMPLEMENTATION 
 

 
 
 

Stela is implemented as a scheduler inside Apache Storm [27], an open source 

distributed data stream processing system [42]. In this chapter we will discuss Stela’s 

system design and implementation. We will first provide an overview of Storm [41]. 

Then we will present the architecture and design details of Stela. 

 

  

6.1 Storm Overview 
	  	  	  
	  
	  
 Apache Storm [27] is an open source distributed real time computation system. 

Storm is widely used in many areas, such as real time analytics, online machine learning, 

continuous computation, etc. Storm can be used with many different languages and can 

be integrated with database in real time. 

 

 

6.1.1 Storm Workflow And Data Model 

 

Real time workflow in Storm is called "Stream". In storm, a data stream is an 

unbounded sequence of tuples. A topology is a user-defined application that can be 
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logically interpreted by a DAG of operators. Storm’s operators are all stateless. In a 

topology, the source operators are called spouts, and all other operators are called bolts. 

Each bolt receives input streams from its parent spout or bolt, performs processing on the 

data and emits new stream to be processed downstream. A Storm bolt can perform a 

variety of tasks such as to filter/aggregate/join incoming tuples, querying database, and 

any user defined functions. Storm spout or bolt can be run by one or more instances in 

parallel. In Storm these instances are called executors. A user can specify the parallelism 

hint of each spout or bolt before application starts. Then Storm will spawn the specified 

number of executors for that operator upon user’s request. Executors owned by the same 

operator contain the same processing logic but they are assigned to different machines. 

Each executor may further be assigned one or multiple tasks. Data stream from upstream 

operator can be assigned to different tasks based on grouping strategies specified by 

users. These strategies include shuffle grouping, fields grouping, all groupings, etc.  

Figure 3 illustrates the intercommunication among tasks in a Storm topology. 
 

 

Figure 3. intercommunication among tasks 
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6.1.2 Storm Architecture 

 

A Storm cluster is composed by two types of node: the master node and work 

nodes. The master node runs a Nimbus daemon that distributes, tracks and monitors all 

executors in the system. Each worker node runs a Supervisor daemon that starts one or 

more worker process(es) and executes a subset of topology. The Nimbus communicates 

with ZooKeeper [6] to maintain membership information of all Supervisors.  

Each Supervisor uses worker slots to accommodate worker processes. In our 

experiment, each Supervisor may contain up to 4 worker processes. Tasks, along with 

their executors (as described in 5.1.1), are assigned to these workers. By default, Storm’s 

scheduler schedules tasks to machines in a round robin fashion. Tasks of one operator are 

usually placed on different machines.        

 

 

Figure 4. Storm task allocation example 
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Figure 4 depicts a task allocation example of a 3-machine Storm cluster running 

the topology shown in Figure 3.  

Storm scheduler (inside Nimbus) is responsible for placing executors (with their 

tasks) of all operators on worker processes. Default Storm scheduler supports 

REBALANCE operation. REBALANCE operation allows users to change application’s 

parallelism hint and the size of the cluster. This operation creates new scheduling by un-

assigning all executors and re-scheduling all executors (with their tasks) in a round robin 

fashion to the modified cluster.  

	  

	  

6.2  Stela Architecture 
 

The architecture of Stela is shown in Figure 5.  

 

 

Figure 5. Stela Architecture 
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Stela is built as a customized scheduler for Storm. It consists of 4 main 

components: 

Statistics Server: Statistics Server is responsible for collecting statistics in Storm cluster. 

These statistics include: the number of executed tuples and number of emitted tuples of 

each executor and operator. Statistics Server then passes this information to GlobalStates. 

GlobalState: GlobalState is responsible for storing current scheduling information of 

Storm cluster, which includes where each task or executor is placed in the cluster, the 

mapping between executor and tasks and the mapping between executor and components. 

Global States also inquire statistics from Statistics Server periodically and then computes 

the execution speed and input speed of each bolt and spout. This process is demonstrated 

in Section 3.1.  

Strategy: Strategy implements core Stela policy and alternative strategies (Section 4). It 

also provides an interface for ElasticityScheduler to easily switch its scale out or scale in 

policy. Strategy provides a new schedule, i.e. task allocation plan, by policy in use by 

system information stored in Statistics Server and GloabalState.  

ElastisityScheduler: ElasticityScheduler implements IScheudler, a standard API 

provided by Storm for users to customize Storm scheduler. ElasticityScheduler integrates 

Statistics Server, Global States and Strategy components and provides new schedule to 

Storm internal. This scheduler can be invoked by user’s REBALNCE request with scale 

in or scale out operation specified. 
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Stela detects newly added machines upon receiving scale out request. Then it 

invokes Strategy component to contact Statistics Server and Global Strategy. And final 

scheduling is returned to ElasticityScheduler by Strategy. Upon receiving a scale in 

request, Stela invokes Strategy as soon as the request arrives. Strategy component 

eventually returns a final scheduling as well as a plan to suggest which machine(s) to 

remove.  
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7. EVALUATION 
 

 
	  

In this section we evaluate the performance of Stela (integrated into Storm) by 

using a variety of Storm topologies. The experiments are divided into two parts: 1) We 

compare the performance of Stela (Section 2.1) and Storm’s default scheduler via three 

micro-benchmark topologies: star topology, linear topology and diamond topology; 2) 

We present the comparison between Stela, Link Load Strategy (Section 3.3), and Storm’s 

default scheduler using two topologies from Yahoo!, which we call PageLoad topology 

and Processing topology.  

 

	  

7.1 Experimental Setup 
 

We use Emulab testbed [21] to perform our experiments. We use two types of 

machines for experiments: for scale out experiments we use PC3000 [38] machines and 

for scale in experiment we use D710 [39] machines for scale in experiments. All 

machines in the cluster are connected by 100Mpbs VLAN. We list hardware 

configurations of these two machine types in Table 3. We further list the Cluster and 

topology settings and cluster changes during scaling process for each of our experiment 

in Table 4. 
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Machine Type CPU Memory	   Storage	  

Scale Out 
(PC3000) 

Single 3 GHz 
processor 2 GB RAM 

2*146 GB 
10000RPM SCSI 

disk 

Scale In (D710) One 2.4GHz 64-bit 
Quad Core processor 

12 GB 1066 MHz 
RAM 

250 GB 7200 RPM 
SATA disk + 750 GB 

7200 RPM SATA 
disk 

 

Table 3. Hardware configurations of machines 

 

Table 4. Cluster and topology settings 

Topology 
Type 

Tasks per 
Component 
Count 

Initial 
Executors 
per 
Component 
Count 

Worker 
Processes 
Count 

Initial 
Cluster 
Size 

Cluster 
Size after 
Scaling 

Star 4 2 12 4 5 

Linear 12 6 24 6 7 

Diamond 8 4 24 6 7 

Page Load 8 4 28 7 8 

Processing 8 4 32 8 9 

Page Load 
Scale in 15 15 32 8 4 
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7.2 Micro-benchmark Experiments 
 

We created three basic micro topologies for our scale out experiments. These 

three micro topologies are commonly used in many stream processing applications. 

Furthermore, they often serve as sub-component of large-scale data stream DAG. The 

layouts of these three topologies are depicted in Figure 6. 

 

	  

	  
(a) Star Topology  (b) Linear Topology         (c) Diamond Topology 
	  

	  Figure 6. Layout of Micro-benchmark Topologies. 

	  
For the Star, Linear, and Diamond topologies we observe that Stela’s post scale-

out throughput is around 65%, 45%, 120% better than that of Storm’s default scheduler, 

respectively. This indicates that Stela correctly identifies the congested bolts and paths 

and prioritizes the right set of bolts to scale out. Figure 7 shows the results of these 

experiments. 
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(a) Star Topology 

 

(b) Linear Topology 

 

      (c) Diamond Topology 

 Figure 7. Micro Benchmark Throughput performance: Stela vs. Storm Default  
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Based on Storm’s default scheduling scheme, the number of executors for each 

operator will not be increased unless requested by users. Our experiment shows migrating 

executors to new machine(s) does not improve overall throughput. This is caused by two 

reasons: 1. Providing extra resources to executor that is not resource constrained does not 

benefit performance, and 2. While the operator is processing at its best performance, its 

processing can hardly be improved without increasing the number of executors.  

 One of the two goals of Stela is to minimize interruption to the running workflow 

(Chapter 1).  We calculate convergence time for all scale out experiments. The results for 

micro benchmark topologies are presented in Figure 8. 

            

Figure 8. Micro Benchmark Convergence Time: Stela vs. Storm Default 

Convergence time measures the interruption imposed by certain strategy to the 

running workflow.  Convergence time is the time interval between when the scale out 

operation starts and when workload throughput stabilizes. To calculate the ending point 
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of the convergence time, we first calculate the average post-scale throughput M and 

standard deviation 𝜎. We define two types of post-scale data point as effective. Assuming 

Storm application overall throughput is T at time point P. If  𝑇 > 𝑀  and 𝑇 −𝑀 < 𝜎, then 

we define T as a type 1 time data point. If  𝑇 < 𝑀  and 𝑀 − 𝑇 < 𝜎, then we define T as a 

type 2 data point. We further define the time of stabilization as the time when we collect 

at least two type 1 data points and at least two type 2 data points after scale out. A lower 

convergence time implies that the strategy is less intrusive during the scaling process.  

Base on experiment results, we observe that Stela is far less intrusive than Storm 

when scaling out in the Linear topology (92% lower) and about as intrusive as Storm in 

the Diamond topology. Stela has longer convergence time tha Storm in Star topology. 

	   	  

	   	  

7.3 Yahoo! Benchmark Experiments 
 

We obtained the layouts of two topologies in use at Yahoo! Inc.: Page Load 

topology and Processing topology. The layout of these two topologies are shown in 

Figure 9. We examine the performance and convergence time of three scale out 

strategies: Storm default, Link load based and Stela. For link load based strategy, we 

choose Least Link Load strategy since it shows the best post scale throughput among all 

alternative strategies (Chapter 4.4).  Least Link Load strategy reduces the network 

latency of the workflow by co-locating communicating tasks to the same machine. The 

result is shown in Figure 10.  
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(a) Page Load Topology    (b) Processing Topology  
	  

	  Figure 9. Yahoo! Benchmark topology layout 

 

	  
	  
(a) Page Load Topology   (b) Processing Topology  
 

 Figure 10. Yahoo! Benchmark topology throughput result 

 

From Figure 10, we observe that Stela improves the throughput by 80% after a 

scale-out for both topologies, while the other two strategies don’t increase the post scale 

throughput.  In fact, Storm default scheduler even decreases the application throughput 

after scale out. This result is caused by the difference between migration and 

parallelization, as we have already observed in the previous section (Section 6.2): 
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Migrating tasks that are not resource constrained to the new machine(s) will not 

significantly improve throughput performance. Increasing parallelization or adding 

additional instances/executors allows operators to consume new resources more 

effectively. Furthermore, without carefully selecting operator and destination machine, 

reassigning executors in a round robin fashion can easily cause some machines to be 

overloaded and creating new bottleneck.  Figure 11 shows the convergence time for 

Yahoo! Topologies.     

              

Figure 11. Yahoo! Topology Convergence Time: Stela vs. Storm Default vs. Least Link 

Load	  

In order to minimize interruption to the running workload, Stela makes best effort 

to not change current scheduling, but rather creates new executors on new machines. 

Similar to Star topology in our micro benchmark experiment, Stela is much less intrusive 

than other two strategies when scaling out in both Yahoo! Strategies. Stela’s convergence 

time is 88% and 75% lower than that of Storm’s default scheduler and about 50% lower 

than that of Least Link Load strategy.  
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7.4 Scale In Experiments 
 

  We finally examined the performance of Stela scale in strategy by running 

Yahoo’s Page Load topology. By default Storm initialize the operator allocation so that 

executors for the same operator will be distributed to as many as machines as possible. 

However this may cause the problem less challenging since all machines in the cluster are 

almost equally loaded.  We modified the operator allocation so that each machine can be 

occupied by tasks from less than 2 operators. We compare performance of Steal and 

performance of a round robin scheduler (same as Storm’s default scheduler) with two 

alternative groups of randomly selected machines. During the scale in process we shrink 

cluster size by 50% (8 machines to 4 machines). Figure 12 shows the throughput changes. 

 

Figure 12. Scale in experiment throughput result: Stela vs. Storm Default	  
 

We observe that Stela preserves throughput after half of the machines are 

removed from the cluster, while the Storm default scheduler experiences 200% and 50% 
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throughput decrease depends on operator selection. Thus, Stela’s post scale throughput is 

40-500% higher than default scheduler, who randomly chooses machines to remove.  

To illustrate scale in process, we further present Storm’s throughput timeline plot 

in Figure 13. also achieves 87.5% and 75% less down time (time duration when 

throughput is zero) than group 1 and group 2, respectively. As we discussed earlier 

(Section 4.4), Stela migrates operators with low ETP to be less intrusive to the 

application. While the chosen operator has congested descendant, this also allows 

downstream congested components to digest tuples in their queues and continue 

producing output. In PageLoad Topology, the two machines with lowest ETPs are chosen 

to be redistributed by Stela, which generates less intrusion for the application thus 

significantly better performance than Storm’s default scheduler. Thus, Stela is intelligent 

at picking the best machines to remove (via ETPSum). In comparison, default scheduler 

cannot guarantee to pick the “best” operators to migrate every run. In the above scenario, 

2 out of the 8 machines were the “best”. The probability that Storm picks both (when it 

picks 4 at random) is only !
! ÷ !

! = 0.21.	  
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Figure 13. Scale in experiment throughput result: Stela vs. Storm Default (two groups)	  
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8. CONCLUSION 
 

 
	  
We have created a novel metric, which we call as ETP (Effective Throughput 

Percentage), that accurately captures the importance of operators based on congestion and 

contribution to overall throughput. We used the ETP metric as a black box to present on 

demand scale-in and scale-out techniques for stream processing systems like Apache 

Storm.  

For scale out, Stela first selects congested processing operators to re-parallelize 

based on ETP. Afterwards, Stela assigns extra resources to the selected operators to 

reduce the effect of the bottleneck. For scale in, we also use an ETP-based approach that 

decides which machine to remove and where to migrate affected operators.  

Our experiments on both micro-benchmarks Topologies and Yahoo Topologies 

show significantly higher post-scale out throughput than default Storm and Link-based 

approach, while also achieving faster convergence. Compared to Apache Storm’s default 

scheduler, Stela’s scale-out operation reduces interruption time to a fraction as low as 

12.5% and achieves throughput that is 45-120% higher than Storm’s. Stela’s scale-in 

operation chooses the right set of servers to remove and performs 40-500% better than 

Storm’s default strategy.  

 

	  

8.1 Future Work 
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Stela provides a solution for distributed data stream processing systems to scale 

out and scale in on demand. However, in many cases it is necessary for a stream 

processing system to scale out and scale in adaptively, i.e. by profiling and adapting to 

changing workload, a system can expand/shrink the number of machines so that all 

machines are best utilized. Thus one important future direction of this work, is to apply 

ETP metric to distributed stream processing systems to promote systems’ ability to scale 

out and scale in adaptively. Currently, we propose that the new system should satisfy two 

SLAs (service-level agreements): 1. Throughput SLA: With minimum throughput 

requirement, the system minimizes the number of machines involved during scaling 

process. 2. Cost SLA:  With fixed number of machines available, the system maximizes 

the post-scale throughput for each scaling operation it performs.  
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