
	

	

	

	

	

	

	

	

© 2015 Le Xu

	 	

 STELA: ON-DEMAND ELASTICITY IN DISTRIBUTED
DATA STREAM PROCESSING SYSTEMS

BY

LE XU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Advisor:

Associate Professor Indranil Gupta

	

ii	

ABSTRACT

Big data is characterized by volume and velocity [24], and recently several real-

time stream processing systems have emerged to combat this challenge. These systems

process streams of data in real time and computational results. However, current popular

data stream processing systems lack the ability to scale out and scale in (i.e., increase or

decrease the number of machines or VMs allocated to the application) efficiently and

unintrusively when requested by the user on demand. In order to scale out/in, a critical

problem that needs to be solved is to determine which operator(s) of the stream

processing application need to be given more resources or taken resources away from, in

order to maximize the application throughput. We do so by presenting a novel metric

called "Expected Throughput Percentage" (ETP). ETP takes into account not only

congested elements of the stream processing application but also their effect on

downstream elements and on the overall application throughput.

Next, we show how our new system, called Stela (STream processing

ELAsticity), incorporates ETP in its scheduling strategy. Stela enables scale out and scale

in operations on demand, and achieves the twin goals of optimizing post-scaling

throughput and minimizing interference to throughput during the scaling out/in. We have

integrated the implementation of Stela into Apache Storm [27], a popular data stream

processing system.

We conducted experiments on Stela using a set of micro benchmark topologies as

well as two topologies from Yahoo! Inc. Our experiment results shows Stela achieves

	

iii	

45% to 120% higher post scale throughput comparing to default Storm scheduler

performing scale out operations, and 40% to 500% of throughput improvement

comparing to the default scheduler during scale in stage. This work is a joint project with

Master student Boyang Peng [1].

	

iv	

For Mom and Dad, who give me all they have.

	

v	

ACKNOWLEDGMENTS

I would like to thank my advisor, Indranil Gupta, to provide invaluable support,

inspirations, and guidance for my research during my study. I am also very grateful to

him for his millions of suggestions and corrections to help me to improve my writing

skill. I would like to thank Boyang Jerry Peng for his collaboration in this project [1].

This work will not be possible without them.

I would also like to express my sincere gratitude to all former and current

members of Distributed Protocols Research Group (DPRG), for their constant support

like a family. Working with them has been one of the most pleasant experiences and my

graduate school career would never be successful without their research suggestions,

career advice, and snack support.

I would like to thank my parents for their love, also for showing me that there are

no shortcuts to success but endless effort.

Many thanks to our collaborators at Yahoo! Inc. for providing us the Storm

topologies: Matt Ahrens, Bobby Evans, Derek Dagit, and the whole Storm development

team at Yahoo! Inc.

	

vi	

TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1 Stream Processing Systems ... 1

1.2 Motivation ... 2

1.3 Contributions Of This Thesis .. 4

2. RELATED WORK .. 6

3. DATA MODEL ... 9

3.1 Data Stream Processing Model ... 9

4. EXPECTED THROUGHPUT PERCENTAGE .. 12

4.1 Congested Operators ... 12

4.2 Expected Throughput Percentage .. 14

4.3 ETP Calculation: An Example .. 16

5. SCALE OUT AND SCALE IN ... 19

5.1 Goals .. 19

5.2 Scale Out ... 20

5.2.1 Load Balancing ... 20

5.2.2 Iterative Assignment ... 21

5.3 Scale In .. 23

5.4 Alternative Strategies .. 25

	

vii	

6. IMPLEMENTATION ... 28

6.1 Storm Overview ... 28

6.1.1 Storm Workflow And Data Model ... 28

6.1.2 Storm Architecture ... 30

6.2 Stela Architecture ... 31

7. EVALUATION ... 34

7.1 Experimental Setup ... 34

7.2 Micro-benchmark Experiments ... 36

7.3 Yahoo! Benchmark Experiments .. 39

7.4 Scale In Experiments ... 42

8. CONCLUSION ... 45

8.1 Future Work ... 45

REFERENCES .. 47

	

1	

1. INTRODUCTION	 	

1.1 Stream Processing Systems

In the past decade we have witnessed a revolution in data processing systems.

Many large-scale distributed data processing systems [2-7] have evolved from single

platform, single data source processing to handling massive datasets characterized by

their volume, velocity and variability [24]. Systems like Hadoop have evolved and

matured to handle huge volume of batch data [25] by adapting distributed processing

paradigm like MapReduce [26]. However, these systems can only serve static data, which

makes it impossible for users to retrieve computational results in real time. Furthermore,

today’s big data that arrives at a very high rate, such as Twitter [55] feeds, server history

logs, and high frequency trading data, which raises new challenges for systems to

transmit, compute, and store data in real time [48].

The demand has arisen for frameworks that allow for processing of live

streaming data and answering queries while being requested. The development of stream

processing systems (SPSs) can be traced back to 1960s [49]. In 1974 Gilles Kahn

defined a parallel program schema that can be defined by a labeled nodes and edges in a

graph, which is still widely used as data model for SPSs development today [50]. In the

1980s dataflow and SPS became active research areas. SPSs were widely used in

	

2	

programing language research, signal processing network and hardware design [49].

Before the era of big data in 21st century, the concept of stream processing has already

been popular and frequently used in many areas such as trading systems and online

auctions [51-52].

One of the earliest works related to stream processing within a distributed

framework was the FOCUS project, published in 1992 [53]. FOCUS treated the

distributed system as consisting of concurrent asynchronous processing elements [49].

Meanwhile, several research projects regarding system’s task migration [54] and load

sharing [55-56] were conducted, laying a foundation for the development of modern

distributed stream processing systems such as Aurora [8] and Borealis [20].

Over the last few years, stream processing has once again become a highly

popular topic: systems like Storm [27], System S [22], Spark Streaming [23], Heron [28]

and many other systems [9-12] have been developed to facilitate online algorithms for

streaming data input. For instance, Yahoo! Inc. uses a stream processing engine to

perform for its advertisement pipeline processing, so that it can monitor ad campaigns in

real-time. Twitter uses a similar engine to compute trending topics [27]. Other examples

include spam detection, personalization, online recommendation and data analytics using

real time machine learning algorithms [40].

1.2 Motivation

	

3	

Unfortunately, current stream processing systems used in industry largely lack an

ability to seamlessly and efficiently scale the number of servers in an on-demand manner,

while on-demand is defined by the ability to scale upon user’s requests. There are many

use cases where shifting the size of cluster is desired. The ability to increase or decrease

cluster size on demand without interrupting workload is critical. It helps the users to add

hardware resources accordingly when required by scaling out, e.g., when incoming data

rate rises. It can also help to reduce unnecessary power and resource consumption by

scaling in, e.g., when the system is under-utilized. Without this feature, users have to be

stop or pause the application for hardware reconfiguration. This may cause long periods

of low or zero throughput. For instance, Storm simply supports such a request by un-

assigning all processing operators and then reassigns them in a round robin fashion to the

new set of machines. This is not seamless as it interrupts the ongoing computation for a

long duration, and shuts down throughput to zero. It is not efficient either as it results in

sub-optimal throughput after the scaling is completed as our experiments show later. The

recent published system Heron [28] has improved Storm’s architecture from multiple

aspects. However the work has not addressed the lack of ability to scale on demand.

In order to bridge this gap, we propose a new metric, Effective Throughput

percentage (ETP), to measure the impact of each computational operator on entire

application throughput. ETP takes into account not only congested elements of the

stream processing application but also their effect on downstream elements and on the

overall application throughput. Using ETP metric, our approach is able to determine the

operator or machine that affect throughput the most.

	

4	

We further present a system, Stela (STream processing ELAsticity) to enable on-

demand scaling for distributed data stream systems using ETP metric. Stela meets two

design goals: First, it optimizes the post-scaling throughput without hardware profiling.

Second, Stela introduces minimal interruption to the ongoing computation. For scale-

out, Stela uses ETP metric to select which operators (inside the application) are given

more resources based on their impact to the throughput, and secondly it performs the

scale-out operation in a way that is minimally obtrusive to the ongoing stream

processing. Similarly, for scale in, Stela uses ETP metric to select which machine to

remove in a way that minimizes the overall detriment to the application’s performance.

1.3 Contributions Of This Thesis

In this thesis we first introduce the design of our ETP metric. Then we introduce

development of our system Stela, that performs scale out and scale in using ETP metric.

We integrated Stela into Apache Storm. And finally we present experimental results

using both micro-benchmark Storm applications as well as Storm applications from

Yahoo!. Our experiments show that compared to Apache Storm’s default scheduler,

Stela’s scale out operation reduces interruption time to a fraction as low as 12.5% and

achieves throughput that is 45-120% higher than Storm’s. Stela’s scale in operation

chooses the right set of servers to remove and performs 40-500% better than Storm’s

default strategy.

The contributions of this work are:

	

5	

• The development of a novel metric, Expected Throughput Percentage (ETP),

that accurately captures the “importance” of an operator towards entire

application.

• Integrating ETP metric into Storm to achieve maximized throughput with

lower cost.

• Evaluating Stela with default Storm and alternative strategies using both

micro-benchmark topology and application used by Yahoo! in production.

	

6	

2. RELATED WORK

Aurora [8] was one of the earliest distributed data stream processing systems.

Both Aurora and its successor, Borealis [20] used a technique called load shedding to

reduce congestion in their workloads. In order to guide load shedding process, they

constantly collected QoS information as a metric to detect throughput bottleneck. They

also collected hardware statistics to help identify congestion caused by resource shortage.

Different from Stela, these systems focused on load balancing of individual machines.

Borealis used correlation-based operator distribution to maximize the correlation between

all pairs of operators within the workflow [29]. Borealis also used ROD (resilient

operator distribution) [30] [9] to determine the best operator distribution plan that does

not easily become overloaded under shifting data flow. Comparing to Aurora, Borealis

allowed queries to be revised and modified dynamically. However, to our best knowledge,

these two systems, as well as some of the most popular distributed stream processing

systems such as Storm [27], Samza [36], Heron [28], Spark Streaming [23] [37],

MillWheel [47] do not currently optimize for scale out and scale in explicitly.

Stromy [18] was a multi-tenant distributed stream processing engine that

supported elastically scaling. Different from traditional stream processing system like

Aurora[8] and Borealis [20], Stormy adapted Distributed Hash Table (DHT) [32], a

technique from several distributed storage systems [33-35] into its design. Stormy used

DHT to map queries (operators) and incoming events to the same physical location using

	

7	

a global unique SID. The technique Stormy used for scale in and scale out is called Cloud

Bursting. A cloud bursting leader would decide whether or not to introduce/remove nodes

to the system based on hardware statistics of each member node. When a new machine

was added to the system, it took a random position on the logical ring and took over

portions of the data range of its neighbors, which might not be the best option to

optimize application throughput.

StreamCloud [15] [31] was a data streaming system designed to be elastic and

scalable. StreamCloud was built on top Borealis Stream Processing Engine [9] aimed to

support elasticity in the existing Borealis system. Similar to Stela, StreamCloud also

adapted parallelization approach. However, StreamClouds focused on the technique to

divide user’s query and maintaining stateful operators. The system monitored CPU usage

for each sub-cluster and increased/decreased resources for each sub-query. Comparing to

Stela, StreamCloud was more concerned with query-based optimization and resource

usage for each sub-cluster/machine rather than optimized throughput for the entire

workflow.

System S [22] [14] [19], SPC [10] [17] (part of System S), and SPADE [13]

(declarative stream processing engine of System S) were developed by IBM to support

user-defined massive volumes of continuous data streams [43]. These systems detected

workload changes by constantly monitor the peak rate of each operator. Then they

expanded or contracted operator’s parallelism to adapt these changes. Similar to

StreamCloud, System S also concentrated on elastically scaling in order to optimize per-

operator performance, while Stela applies novel ETP metric to the entire workflow.

	

8	

System S, Stormy and StreamCloud were not the only stream processing systems

that have adapted parallelization approach. Newly developed systems such as [44] and

DRS [45] used parallelization for elasticity scaling. These systems changed operator’s

parallelization level by QoS metrics [44] or existing models [45-46]. However, systems

like [44] and DRS used strategies that optimized for shortest latency, while Stela targets

at maximum throughput. More importantly, Stela targets on on-demand elasticity, which

implies that the amount of resources to be added (or removed) is determined and

restricted by user. This scenario is common to many use cases when users are restricted

by their budget or has a plan to use specific amount of resources, which enforces Stela to

choose the best operator/machine during scaling.	

In a recent paper [18] on adaptive scheduling in Storm, the author’s presented the

use of link-based techniques to schedule Storm topologies. By using both topology-based

and traffic-based scheduling, the system aimed at minimizing the traffic among executors

within same workers. Based on our research, this is only paper at this time that

demonstrated effective scheduling techniques (e.g. using link-based scheduling

techniques), which surpassed the performances of Storm’s default scheduler. Thus, we

choose to compare Stela against strategies using link-based approaches on top of

comparing against Storm’s default strategies.

	

9	

3. DATA MODEL

In this chapter, we introduce the system model for data stream processing

systems in our work. This includes a brief introduction of the workflow input and the

important concepts that apply to different types of stream processing systems in general.

3.1 Data Stream Processing Model

Data stream processing model can logically be depicted as a directed acyclic

graph (DAG) composed by a set of vertices connected by edges. An example of data

stream is illustrated in the Figure 1. In this work, we define such logic graph as a

workflow.

Figure. 1 Data Stream Example

	

10	

We further define some important concepts in data stream model as follows:

Tuple: A tuple is the basic unit being processed within workflow. A tuple can be

defined in predefined data type (e.g. Integer, String, etc.) or customized data type (e.g.

user-defined class).

 Operators: In the workflow DAG, the vertices connected by edges are called

operators. An operator is a logical representation of the piece of code provided by the

user in the workflow. Each operator can be interpreted as a “step” to execute tuples.

Operators can have one or more input which allows it to receive tuples from upstream

objects. Similarly, they can deliver their tuples to one or more downstream operators. An

operator that has no parent is called a source. An operator that has no children is called a

sink. In this work, we assume all operators are stateless: i.e. operators store no

information from the previously processed tuples.

 Instance: An instance (of an operator) is an instantiation of the operator’s

processing logic and is the physical entity that executes the operator’s logic. In general,

executors are implemented by processes or threads in order to parallelize the workload

for an operator. For each operator, there can be one or more instances executing the

program logic simultaneously.

Table 1 lists definitions of theses terminologies. We also include the name of each

terminology used in Apache Storm [27], which will be discussed later in Chapter 6.

Terminology	 Definition	 Terminology	 used	 in	 Storm	
Topology	 Logical workflow graph Topology

Table 1 List of terminologies and their definitions.

	

11	

Terminology	 Definition	 Terminology	 used	 in	 Storm	
Tuple Basic data unit being processed Tuple

Operator An instructional step to process
tuples Bolt or Spout

Source An operator that has no parent Spout
Sink An operator that has no children Output bolt

Instance

An instantiation of the operator’s
processing logic and the physical
entity that executes the operator’s

logic

Executor

Table 1 List of terminologies and their definitions (continued).

	

	

12	

4. EXPECTED THROUGHPUT PERCENTAGE

In this chapter, we introduce a new metric, called Expected Throughput

Percentage (ETP). ETP estimates the effect of each congested operator of the stream

processing application on the overall application throughput. We use ETP to determine

which operator to give resources to (while scaling out) or take resources away from

(while scaling in). We will first define this metric and describe the algorithm to

computed ETP in Section 4.1 and 4.2. Later we will further illustrate computing ETP by

an example in Section 4.3.

4.1 Congested Operators

Aiming to achieve high post-scale throughput and low throughput reduction

during scaling, our approach consists of two parts: first, we profile the rate of tuples

being processed by each operator. Then we create a preferential ordering of the

operators in the workflow that determines their priority in scaling out/in.

We consider an operator to be congested if the sum of the speeds of its input

streams (input speed 𝑅!"#$%) is higher than the execution speed 𝑅!"!#$%! (execution

speed). To collect input speed and execution speed for each operator, we periodically

records the number of tuples being processed, 𝑇!"!#$%! and the number of tuples being

	

13	

submitted, 𝑇!"#$, within a sliding time window. For an operator that has 𝑛 parents, we

calculate input speed and execution speed as follows:

𝑅!"#$% =
𝑇!_!_!"#$!

!

𝑊
!

!!!

𝑅!"!#$%! =
𝑇!"!#$%!
𝑊

𝑇!_!_!"#$ is the emit rate of parent 𝑖 at time slot j and the number of time slots in a

time window, i.e. window size, is 𝑊.

Our approach detects congested components by Algorithm 1. All congested

operators are stored in a data structure called CongestedMap:

Algorithm 1 Detecting heavily congested operators in the topology

1: procedure	 CONGESTIONDETECTION	 	
2: for	 each	 Operator	 o	 ∈	 Topology	 do	
3: 𝑅!"#$%	 ← 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑅𝑎𝑡𝑒𝑀𝑎𝑝(𝑜.𝑝𝑎𝑟𝑒𝑛𝑡);	 //summing	 of	 emit	 rate	 of	

all	 parents	
4: 𝑅!"!#$%! 	 ←	 ProcessingRateMap(o);	
5: 	 if	 𝑅!!"#$/𝑅!"!#$%! 	 >	 CongestionRate	 𝛼	 then	
6: add	 o	 to	 CongestedMap;	 	
7: end	 if	
8: end	 for	 	
9: return	 CongestedMap;	
10: end	 procedure

Here an operator is considered to be congested when 𝑅!"#$% > 𝛼 ∗ 𝑅!"!#$%!.

Here 𝛼 is the congestion rate, a user-defined variable defines the sensitivity of

	

14	

congestion detection. We recommend users set 𝛼 to be higher than 1 to compensate for

inaccuracies in measurement. For our experiments, we set 𝛼 to be 1.2. A higher

congestion rate may lead to less operators being detected by filtering out operators

whose input speed is only slightly higher than execution speed.

4.2 Expected Throughput Percentage

Expected Throughput Percentage (ETP) is a new metric we use to evaluate the

impact that each operator has towards the application throughput. For any operator x, we

define ETP of x as the percentage of the final throughput being affected by the change of

𝑅!, the execution speed of operator x. Formally, we define ETP of operator o in a

workflow as:

𝐸𝑇𝑃! =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡!""#$%&'#(#)$!!"#$%&'()

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡!"#$%&"!

 We denote the throughput of entire workflow as 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡!"#$%&"! and

where 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡!"#$%&"! is the sum of the execution speeds of all sinks in the

workflow where x resides. To compute 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡!""#$%&'#(#)$!!"#$%&'(), which is

defined as the effective throughput of operator 𝑥, we run the following algorithm:

	

15	

Algorithm 2 Find ETP of operator x of the application

1: procedure FINDETP(ProcessingRateMap)
2: if x.child = null then
3: return ProcessingRateMap.get(x) //x is a sink
4: end if
5: SubtreeSum ← 0;
6: for each descendant child ∈x do
7: if child.congested = true then
8: continue; // if the child is congested, give up the subtree rooted at that

child
9: else
10: SubtreeSum+ = FINDETP(child);
11: end if
12: end for
13: return SubtreeSum
14: endprocedure

This algorithm traverses all descendants of operator x and computes the sum of

the execution speed of the sinks, only if the sink can be reached by one or more

uncongested path(s). It explores the descendent substructure of operator x in depth-first

fashion. Here we define substructure of operator x as all downstream operators that

receive data stream previously processed by operator x. For example, if the downstream

operators descend from operator x forms a tree. Then the substructure of operator x is the

subtree rooted at x.

If the algorithm encounters a congested operator, it will prune this substructure

and consider this substructure to generate no significant on overall application

throughput. Otherwise the algorithm will continue visiting the current explored operator’s

children. If this process reaches an uncongested sink operator, it will consider the tuples

	

16	

produced by this operator contribute to “effective throughput” and therefore include its

execution speed in the ETP of operator x.

4.3 ETP Calculation: An Example

We use an example to show how to calculate ETP of an operator in an application

workflow, as shown in Figure.2.

Figure. 2 An example of stream processing application with a tree structure: Shaded
operators are congested

In this example, the execution speed for each operator is shown in the figure. The

congested operators are shaded and we assume the congestion rate 𝛼 equals to 1, i.e.

operators 1, 3, 4 and 6. Thus an operator is congested if the sum of its input speeds is

	

17	

higher than the execution speed. Before we calculate the effective throughput of any

operators, we first calculate the sum of execution speed of all sinks in the workflow, i.e. 4,

7, 8, 9, 10, as the workflow throughput: 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡!"#$%&"! = 2000+ 1000+

1000+ 200+ 300 = 4500 𝑡𝑢𝑝𝑙𝑒𝑠/𝑠.

To calculate the ETP of operator 3, we first determine the reachable sink

operators for operator 3 are 7, 8, 9 and 10. Of these only operators 8 and 9 are considered

to be the “effectively” reachable sink operators, as both of them can be reached through

an uncongested path (through uncongested operator 5). Changing execution speed of

operator 3 will affect the throughput of operator 7 and 8 immediately. Meanwhile,

operators 9 and 10 will not be affected by the changes despite the fact that both operators

are reachable sinks for operator 3. This is because operator 6 being congested suggests

that its computational resources have become saturated. Thus, simply increasing

execution rate of operator 3 will only make operator 6 further congested. Without

providing extra computing resources to operator 6, the input speed for operator 9 and 10

will remain unchanged. We ignore the subtree of operator 6 while calculating 3’s ETP as

ETP3 = (1000 + 1000)/4500 = 44%.

Similarly, for operator 1, operator 4, 7, 8, 9, 10 are sink operators that are

reachable. However, none of them can be reached via an uncongested path. Thus the ETP

of operator 1 is 0. This implies while the throughput (execution speed) of operator 1

changes, none of the output sink will be affected. Likewise, we can calculate the ETP of

operator 4 as 44% and the ETP of operator 6 as 11%. This result suggests when the

execution speed of operator 4 changes, 44% of output of the application will be affected.

	

18	

For operator 6, only 11% application output will be affected while its execution speed

changes.

	

19	

5. SCALE OUT AND SCALE IN

By calculating the ETPs of operators, our approach learns the impact each

operator has towards the application throughput. In this chapter, we further discuss how

our system called Stela uses ETP to support scale out and scale in an on demand manner.

5.1 Goals

There are two goals that Stela aims at during its scaling process:

1. Achieve high post-scale throughput and

2. Minimize the interference towards the running workflow.

In order to achieve these two goals, we use ETP metric to determine the best

operator to parallelize and migrate to the new machine(s) during scale out operation, or

the best machine(s) to remove during the scale in operation. Here we define scale out as

the system’s ability to reallocate or re-arrange part of its current jobs to newly added

machines. Similarly, we define scale in as the system’s ability to select machine(s) to

remove from the current cluster, and reallocate or re-distributed tasks to the remaining

machines. All scaling decisions can be made without hardware profiling. The details of

these policies are described in the following sections.

	

20	

5.2 Scale Out

This section introduces how Stela performs a scale out operation when new

machine(s) are added to the system. Upon receiving user’s request for scale out, we first

determine the number of instances it can allocate to new machine(s) and prepares its

operation by collecting the execution speed and input speed for each operator. Then it

calculates the ETP for each congested operator and capture the percentage of total

application throughput that the operator has impact on. Finally we iteratively select the

“best” operator to assign more resources by increasing its parallelism level. We describe

these details below.

5.2.1 Load Balancing

Stela first determines the amount of instances it needs to allocate to the new

machine(s) when the scale out request is received. To ensure load balancing, Stela

allocates new instances to the new machine(s) so that the average number of instances

per machine remains unchanged. Assuming before scale out the number of instances in

the application is 𝐼!!"!!"#$% and the number of machines in the cluster is 𝑀!"#!!"#$%.

Stela determines the number of instances to allocate to each new machine as ∆𝐼 =

𝐼!"#!!"#$%/𝑀!"#!!"#$%, where ∆𝐼 is also the average number of instances per machine

before scale out.

	

21	

5.2.2 Iterative Assignment

After determining the number of instances to be allocated to the new machine(s).

We allocate instance slots on these machines. A list of instance slots is a data structure

we define for each machine that stores the executors to be needs to be migrated to the

machine. We search for all congested operators in the workflow and calculate their ETPs.

All ETPs and the operators are stored in a data structure called CongestedMap in the

form of key-value pairs. (See Chapter 3 for details). While assigning new instance to an

instance slot, our approach target at the operator with highest ETP in CongestedMap and

parallelize it by adding one more instance to the instance slot on a new machine.

Algorithm 3 depicts the pseudocode.

Algorithm 3 Stela: Scale-out

1: procedure	 SCALE-‐OUT	 	
2: slot	 ←	 0;	
3: while	 slot	 <	 Ninstances	 do	 	
4: CongestedMap	 ←	 CONGESTIONDETECTION;	 	
5: if	 CongestedMap.empty	 =	 true	 then	 	
6: return	 source;	 //	 none	 of	 the	 operators	 are	 congested	 	
7: end	 if	
8: for	 each	 operator	 o	 ∈	 CongestedMap	 do	 	
9: ETPMap←	 FINDETP(Operator	 o);	
10: end	 for	
11: target	 ←	 ETPMap.max;	
12: ExecutionRateMap.update(target);	 //update	 the	 target	 execution	 rate	 	
13: slot++;	
14: end	 while	 	
15: end	 procedure	

	

22	

This iteration repeats ∆𝐼 ∗ ∆𝑀 times where ∆𝐼 is the number of instance slots on

a new machine and ∆𝑀 is the number of newly added machines. During each iteration

we select a target operator to spawn a new instance that will be allocated to the new

machine. The algorithm traverses all congested operators (via CongestedMap) and

computes the ETP value for each operator (using the algorithm described in Chapter 3).

Then Stela stores them in ETPMap as key-value pairs sorted by values. Finally it selects

the operator with the highest ETP value and sets that operator as a target. If the

CongestedMap is empty, meaning there are no operators being congested in the

application, Stela will select one of the source operators so that the input rate of the

entire workflow will be increased – this will increase rate of incoming tuples for all

descendant operators of that source.

Before the next iteration starts, Stela attempts to estimate the execution rate of

the previously targeted operator o. It is critical to update the execution rate of the

targeted operator since the assigning new resources to a congested operator may affect

the input speed for all descendant operators. Thus it is important for it to estimate the

execution speed of o and input speed for all descendants of o every iteration. Assuming

target operator has execution speed of 𝐸! and operated by k instances, we estimate the

execution speed of the target operator proportionally by: 𝐸′! = 𝐸! ∗ (𝑘 + 1)/𝑘. The

intuition behind the design choice is clear: by predicting the impact of each congested

operator towards the entire application based on the structure of the workflow, we can

discover a combination of operators that may generate most benefit to the application by

assigning extra resources.

	

23	

After the algorithm updates the execution speed of the target operator, it re-runs

Algorithm 1 for each operator in the workflow and updates CongestedMap. Then it

recalculates the ETP for each operator in the updated CongestedMap. We call these new

ETPs as projected ETPs, or PETPs. PETPs are estimated value of ETPs assuming extra

resources have been granted to the operator for the current iteration. Each iteration

selects the operator with highest ETP to assign an instance slot to accommodate a new

instance of this operator. The processes repeats ∆𝐼 ∗ ∆𝑀 until all instance slots are

assigned, where ∆𝐼 is the number of instance slots on a new machine and ∆𝑀 is the

number of newly added machines.

	

5.3 Scale In

In this section we describe the technique Stela uses for scale in operation using

ETP metric. For scale in, we assume the user send the number of machines to be removed

along with the scale in request. Different from scale out operation, Stela needs to decide

which machine(s) to remove from the cluster and how to re-distribute the jobs resides on

these machines. To decide this machine, Stela uses ETP to calculate the ETP of each

machine (not just each operator). ETP of one machine is defined by the sum of ETPs of

all executors on this machine. ETP of an executor equals to ETP of operator this executor

belongs to. For a machine with n instances, Stela computes sum of ETP of all executors

for this machine as:

	

24	

𝐸𝑇𝑃𝑆𝑢𝑚 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑘 = 𝐹𝑖𝑛𝑑𝐸𝑇𝑃(𝐹𝑖𝑛𝑑𝐶𝑜𝑚𝑝(𝑡𝑖))!
!!!

For a specific instance, our approach looks up the operator that spawns this

instance. It then invokes FindETP to find the ETP for the operator as well as the instance.

Repeating this process for every instance, it stores the ETPSum for each machine then

decides which machine(s) to be removed. Algorithm 4 depicts this process.

Algorithm 4 Stela: Scale-out

1: procedure	 SCALE-‐OUT	 	
2: slot	 ←	 0;	
3: while	 slot	 <	 Ninstances	 do	 	
4: CongestedMap	 ←	 CONGESTIONDETECTION;	 	
5: if	 CongestedMap.empty	 =	 true	 then	 	
6: return	 source;	 //	 none	 of	 the	 operators	 are	 congested	 	
7: end	 if	
8: for	 each	 operator	 o	 ∈	 CongestedMap	 do	 	
9: ETPMap←	 FINDETP(Operator	 o);	
10: end	 for	
11: target	 ←	 ETPMap.max;	
12: ExecutionRateMap.update(target);	 //update	 the	 target	 execution	 rate	 	
13: slot++;	
14: end	 while	 	
15: end	 procedure	

Assuming M_scalein is the number of machines user specifies to remove. The

algorithm traverses all machines in the cluster and construct an ETPMachineMAP that

stores ETPSum for each machine. ETPMachineMAP is sorted by its value. Stela selects

the top M_scalein machines with the lowest ETPSum from ETPMachineMAP, as the

	

25	

target machine(s). We select the machine with lowest ETPSum because, according to

our Stela metric, the executors reside on that machine will have the lowest impact on

application throughput in total.

Then Stela re-distributes instances from target machines to all other machines in

a round-robin fashion in increasing order of their ETPSum. This design is beneficial in

two ways: Distributing instances in a round-robin fashion ensures load-balancing.

Additionally, while the total number of instances on target machine(s) cannot be evenly

distributed to the remaining machine, prioritizing destination machine with lower

ETPSum may introduce less intrusion to the workflow. This is the instances reside on

machine with lower ETPSum is likely to have less impact on the application.

5.4 Alternative Strategies

Besides our scale in and scale out strategy based on ETP metric, we attempt

several alternative topology-aware strategies for scaling out. These strategies choose

specific operator(s) purely based their alignment in the workflow DAG. Then the chosen

operator(s) are reallocated to the new resources in the cluster. We list these strategies in

and their design logic in Table 2. Then we will compare the ETP-based approach against

them in our experiment section.

	

26	

Strategy Name

Prioritized operator
to access new

resources

Design logic

Sink Closeness

Operators with
minimum number of

hops from its sink
operator

Operators connected close to the sink affect
the throughput the most

Source Closeness

Operators with
minimum number of
hops from its source

operator

Congested operator locate more upstream
will affect the performance of more operators

downstream

Number of
Descendants

Operators with more
descendants

Operators with more descendants have

larger effect on all operators

Centrality
Operators with higher
number of in and out

edges

A well-connected operator has larger effect
on the entire application than operators with

less in and out connections

Least Link Load Operators connected
by lighter loaded link

Links with low traffic implies bottleneck.
Operators connected to lighter loaded link

need more resources for the throughput
improvement.

Most Link Load Operators connected
by heavier loaded link

Operators connected to heavy loaded link are
likely to be congested.

Table 2: Alternative Strategies And Their Design Logic

Among all these strategies, the two link-load based strategies have been used

previously [18] to improve Storm’s performance. We also found Least Link Load

strategy improves application performance the most during our experiments. Thus we

choose Least Link Load to represent all alternative strategies listed above. This is because

	

27	

Least Load Strategy aims to minimize the network traffic among physical machines.

Thus most of the data transfer between instances can be done locally. In our evaluation

section we will compare Least Link Load strategy with our ETP metric approach in terms

of throughput performance and degree of workload interruption.

	

28	

6. IMPLEMENTATION

Stela is implemented as a scheduler inside Apache Storm [27], an open source

distributed data stream processing system [42]. In this chapter we will discuss Stela’s

system design and implementation. We will first provide an overview of Storm [41].

Then we will present the architecture and design details of Stela.

6.1 Storm Overview
	 	 	
	
	
 Apache Storm [27] is an open source distributed real time computation system.

Storm is widely used in many areas, such as real time analytics, online machine learning,

continuous computation, etc. Storm can be used with many different languages and can

be integrated with database in real time.

6.1.1 Storm Workflow And Data Model

Real time workflow in Storm is called "Stream". In storm, a data stream is an

unbounded sequence of tuples. A topology is a user-defined application that can be

	

29	

logically interpreted by a DAG of operators. Storm’s operators are all stateless. In a

topology, the source operators are called spouts, and all other operators are called bolts.

Each bolt receives input streams from its parent spout or bolt, performs processing on the

data and emits new stream to be processed downstream. A Storm bolt can perform a

variety of tasks such as to filter/aggregate/join incoming tuples, querying database, and

any user defined functions. Storm spout or bolt can be run by one or more instances in

parallel. In Storm these instances are called executors. A user can specify the parallelism

hint of each spout or bolt before application starts. Then Storm will spawn the specified

number of executors for that operator upon user’s request. Executors owned by the same

operator contain the same processing logic but they are assigned to different machines.

Each executor may further be assigned one or multiple tasks. Data stream from upstream

operator can be assigned to different tasks based on grouping strategies specified by

users. These strategies include shuffle grouping, fields grouping, all groupings, etc.

Figure 3 illustrates the intercommunication among tasks in a Storm topology.

Figure 3. intercommunication among tasks

	

30	

6.1.2 Storm Architecture

A Storm cluster is composed by two types of node: the master node and work

nodes. The master node runs a Nimbus daemon that distributes, tracks and monitors all

executors in the system. Each worker node runs a Supervisor daemon that starts one or

more worker process(es) and executes a subset of topology. The Nimbus communicates

with ZooKeeper [6] to maintain membership information of all Supervisors.

Each Supervisor uses worker slots to accommodate worker processes. In our

experiment, each Supervisor may contain up to 4 worker processes. Tasks, along with

their executors (as described in 5.1.1), are assigned to these workers. By default, Storm’s

scheduler schedules tasks to machines in a round robin fashion. Tasks of one operator are

usually placed on different machines.

Figure 4. Storm task allocation example

	

31	

Figure 4 depicts a task allocation example of a 3-machine Storm cluster running

the topology shown in Figure 3.

Storm scheduler (inside Nimbus) is responsible for placing executors (with their

tasks) of all operators on worker processes. Default Storm scheduler supports

REBALANCE operation. REBALANCE operation allows users to change application’s

parallelism hint and the size of the cluster. This operation creates new scheduling by un-

assigning all executors and re-scheduling all executors (with their tasks) in a round robin

fashion to the modified cluster.

	

	

6.2 Stela Architecture

The architecture of Stela is shown in Figure 5.

Figure 5. Stela Architecture

	

32	

Stela is built as a customized scheduler for Storm. It consists of 4 main

components:

Statistics Server: Statistics Server is responsible for collecting statistics in Storm cluster.

These statistics include: the number of executed tuples and number of emitted tuples of

each executor and operator. Statistics Server then passes this information to GlobalStates.

GlobalState: GlobalState is responsible for storing current scheduling information of

Storm cluster, which includes where each task or executor is placed in the cluster, the

mapping between executor and tasks and the mapping between executor and components.

Global States also inquire statistics from Statistics Server periodically and then computes

the execution speed and input speed of each bolt and spout. This process is demonstrated

in Section 3.1.

Strategy: Strategy implements core Stela policy and alternative strategies (Section 4). It

also provides an interface for ElasticityScheduler to easily switch its scale out or scale in

policy. Strategy provides a new schedule, i.e. task allocation plan, by policy in use by

system information stored in Statistics Server and GloabalState.

ElastisityScheduler: ElasticityScheduler implements IScheudler, a standard API

provided by Storm for users to customize Storm scheduler. ElasticityScheduler integrates

Statistics Server, Global States and Strategy components and provides new schedule to

Storm internal. This scheduler can be invoked by user’s REBALNCE request with scale

in or scale out operation specified.

	

33	

Stela detects newly added machines upon receiving scale out request. Then it

invokes Strategy component to contact Statistics Server and Global Strategy. And final

scheduling is returned to ElasticityScheduler by Strategy. Upon receiving a scale in

request, Stela invokes Strategy as soon as the request arrives. Strategy component

eventually returns a final scheduling as well as a plan to suggest which machine(s) to

remove.

	

34	

7. EVALUATION

	

In this section we evaluate the performance of Stela (integrated into Storm) by

using a variety of Storm topologies. The experiments are divided into two parts: 1) We

compare the performance of Stela (Section 2.1) and Storm’s default scheduler via three

micro-benchmark topologies: star topology, linear topology and diamond topology; 2)

We present the comparison between Stela, Link Load Strategy (Section 3.3), and Storm’s

default scheduler using two topologies from Yahoo!, which we call PageLoad topology

and Processing topology.

	

7.1 Experimental Setup

We use Emulab testbed [21] to perform our experiments. We use two types of

machines for experiments: for scale out experiments we use PC3000 [38] machines and

for scale in experiment we use D710 [39] machines for scale in experiments. All

machines in the cluster are connected by 100Mpbs VLAN. We list hardware

configurations of these two machine types in Table 3. We further list the Cluster and

topology settings and cluster changes during scaling process for each of our experiment

in Table 4.

	

35	

Machine Type CPU Memory	 Storage	

Scale Out
(PC3000)

Single 3 GHz
processor 2 GB RAM

2*146 GB
10000RPM SCSI

disk

Scale In (D710) One 2.4GHz 64-bit
Quad Core processor

12 GB 1066 MHz
RAM

250 GB 7200 RPM
SATA disk + 750 GB

7200 RPM SATA
disk

Table 3. Hardware configurations of machines

Table 4. Cluster and topology settings

Topology
Type

Tasks per
Component
Count

Initial
Executors
per
Component
Count

Worker
Processes
Count

Initial
Cluster
Size

Cluster
Size after
Scaling

Star 4 2 12 4 5

Linear 12 6 24 6 7

Diamond 8 4 24 6 7

Page Load 8 4 28 7 8

Processing 8 4 32 8 9

Page Load
Scale in 15 15 32 8 4

	

36	

7.2 Micro-benchmark Experiments

We created three basic micro topologies for our scale out experiments. These

three micro topologies are commonly used in many stream processing applications.

Furthermore, they often serve as sub-component of large-scale data stream DAG. The

layouts of these three topologies are depicted in Figure 6.

	

	
(a) Star Topology (b) Linear Topology (c) Diamond Topology
	

	 Figure 6. Layout of Micro-benchmark Topologies.

	
For the Star, Linear, and Diamond topologies we observe that Stela’s post scale-

out throughput is around 65%, 45%, 120% better than that of Storm’s default scheduler,

respectively. This indicates that Stela correctly identifies the congested bolts and paths

and prioritizes the right set of bolts to scale out. Figure 7 shows the results of these

experiments.

	

37	

(a) Star Topology

(b) Linear Topology

 (c) Diamond Topology

 Figure 7. Micro Benchmark Throughput performance: Stela vs. Storm Default

	

38	

Based on Storm’s default scheduling scheme, the number of executors for each

operator will not be increased unless requested by users. Our experiment shows migrating

executors to new machine(s) does not improve overall throughput. This is caused by two

reasons: 1. Providing extra resources to executor that is not resource constrained does not

benefit performance, and 2. While the operator is processing at its best performance, its

processing can hardly be improved without increasing the number of executors.

 One of the two goals of Stela is to minimize interruption to the running workflow

(Chapter 1). We calculate convergence time for all scale out experiments. The results for

micro benchmark topologies are presented in Figure 8.

Figure 8. Micro Benchmark Convergence Time: Stela vs. Storm Default

Convergence time measures the interruption imposed by certain strategy to the

running workflow. Convergence time is the time interval between when the scale out

operation starts and when workload throughput stabilizes. To calculate the ending point

	

39	

of the convergence time, we first calculate the average post-scale throughput M and

standard deviation 𝜎. We define two types of post-scale data point as effective. Assuming

Storm application overall throughput is T at time point P. If 𝑇 > 𝑀 and 𝑇 −𝑀 < 𝜎, then

we define T as a type 1 time data point. If 𝑇 < 𝑀 and 𝑀 − 𝑇 < 𝜎, then we define T as a

type 2 data point. We further define the time of stabilization as the time when we collect

at least two type 1 data points and at least two type 2 data points after scale out. A lower

convergence time implies that the strategy is less intrusive during the scaling process.

Base on experiment results, we observe that Stela is far less intrusive than Storm

when scaling out in the Linear topology (92% lower) and about as intrusive as Storm in

the Diamond topology. Stela has longer convergence time tha Storm in Star topology.

	 	

	 	

7.3 Yahoo! Benchmark Experiments

We obtained the layouts of two topologies in use at Yahoo! Inc.: Page Load

topology and Processing topology. The layout of these two topologies are shown in

Figure 9. We examine the performance and convergence time of three scale out

strategies: Storm default, Link load based and Stela. For link load based strategy, we

choose Least Link Load strategy since it shows the best post scale throughput among all

alternative strategies (Chapter 4.4). Least Link Load strategy reduces the network

latency of the workflow by co-locating communicating tasks to the same machine. The

result is shown in Figure 10.

	

40	

(a) Page Load Topology (b) Processing Topology
	

	 Figure 9. Yahoo! Benchmark topology layout

	
	
(a) Page Load Topology (b) Processing Topology

 Figure 10. Yahoo! Benchmark topology throughput result

From Figure 10, we observe that Stela improves the throughput by 80% after a

scale-out for both topologies, while the other two strategies don’t increase the post scale

throughput. In fact, Storm default scheduler even decreases the application throughput

after scale out. This result is caused by the difference between migration and

parallelization, as we have already observed in the previous section (Section 6.2):

	

41	

Migrating tasks that are not resource constrained to the new machine(s) will not

significantly improve throughput performance. Increasing parallelization or adding

additional instances/executors allows operators to consume new resources more

effectively. Furthermore, without carefully selecting operator and destination machine,

reassigning executors in a round robin fashion can easily cause some machines to be

overloaded and creating new bottleneck. Figure 11 shows the convergence time for

Yahoo! Topologies.

Figure 11. Yahoo! Topology Convergence Time: Stela vs. Storm Default vs. Least Link

Load	

In order to minimize interruption to the running workload, Stela makes best effort

to not change current scheduling, but rather creates new executors on new machines.

Similar to Star topology in our micro benchmark experiment, Stela is much less intrusive

than other two strategies when scaling out in both Yahoo! Strategies. Stela’s convergence

time is 88% and 75% lower than that of Storm’s default scheduler and about 50% lower

than that of Least Link Load strategy.

	

42	

7.4 Scale In Experiments

 We finally examined the performance of Stela scale in strategy by running

Yahoo’s Page Load topology. By default Storm initialize the operator allocation so that

executors for the same operator will be distributed to as many as machines as possible.

However this may cause the problem less challenging since all machines in the cluster are

almost equally loaded. We modified the operator allocation so that each machine can be

occupied by tasks from less than 2 operators. We compare performance of Steal and

performance of a round robin scheduler (same as Storm’s default scheduler) with two

alternative groups of randomly selected machines. During the scale in process we shrink

cluster size by 50% (8 machines to 4 machines). Figure 12 shows the throughput changes.

Figure 12. Scale in experiment throughput result: Stela vs. Storm Default	

We observe that Stela preserves throughput after half of the machines are

removed from the cluster, while the Storm default scheduler experiences 200% and 50%

	

43	

throughput decrease depends on operator selection. Thus, Stela’s post scale throughput is

40-500% higher than default scheduler, who randomly chooses machines to remove.

To illustrate scale in process, we further present Storm’s throughput timeline plot

in Figure 13. also achieves 87.5% and 75% less down time (time duration when

throughput is zero) than group 1 and group 2, respectively. As we discussed earlier

(Section 4.4), Stela migrates operators with low ETP to be less intrusive to the

application. While the chosen operator has congested descendant, this also allows

downstream congested components to digest tuples in their queues and continue

producing output. In PageLoad Topology, the two machines with lowest ETPs are chosen

to be redistributed by Stela, which generates less intrusion for the application thus

significantly better performance than Storm’s default scheduler. Thus, Stela is intelligent

at picking the best machines to remove (via ETPSum). In comparison, default scheduler

cannot guarantee to pick the “best” operators to migrate every run. In the above scenario,

2 out of the 8 machines were the “best”. The probability that Storm picks both (when it

picks 4 at random) is only !
! ÷ !

! = 0.21.	

	

44	

Figure 13. Scale in experiment throughput result: Stela vs. Storm Default (two groups)	
	

	

45	

8. CONCLUSION

	
We have created a novel metric, which we call as ETP (Effective Throughput

Percentage), that accurately captures the importance of operators based on congestion and

contribution to overall throughput. We used the ETP metric as a black box to present on

demand scale-in and scale-out techniques for stream processing systems like Apache

Storm.

For scale out, Stela first selects congested processing operators to re-parallelize

based on ETP. Afterwards, Stela assigns extra resources to the selected operators to

reduce the effect of the bottleneck. For scale in, we also use an ETP-based approach that

decides which machine to remove and where to migrate affected operators.

Our experiments on both micro-benchmarks Topologies and Yahoo Topologies

show significantly higher post-scale out throughput than default Storm and Link-based

approach, while also achieving faster convergence. Compared to Apache Storm’s default

scheduler, Stela’s scale-out operation reduces interruption time to a fraction as low as

12.5% and achieves throughput that is 45-120% higher than Storm’s. Stela’s scale-in

operation chooses the right set of servers to remove and performs 40-500% better than

Storm’s default strategy.

	

8.1 Future Work

	

46	

Stela provides a solution for distributed data stream processing systems to scale

out and scale in on demand. However, in many cases it is necessary for a stream

processing system to scale out and scale in adaptively, i.e. by profiling and adapting to

changing workload, a system can expand/shrink the number of machines so that all

machines are best utilized. Thus one important future direction of this work, is to apply

ETP metric to distributed stream processing systems to promote systems’ ability to scale

out and scale in adaptively. Currently, we propose that the new system should satisfy two

SLAs (service-level agreements): 1. Throughput SLA: With minimum throughput

requirement, the system minimizes the number of machines involved during scaling

process. 2. Cost SLA: With fixed number of machines available, the system maximizes

the post-scale throughput for each scaling operation it performs.

	

47	

REFERENCES

[1] Peng, B. "	 Elasticity	 and	 resource	 aware	 scheduling	 in	 distributed	 data	 stream	

processing	 systems”Master's Thesis, University of Illinois, Urbana-Champaign,
2015.

[2] Apache Hadoop. http://hadoop.apache.org/.

[3] Apache Hive. https://hive.apache.org/.

[4] Apache Pig. http://pig.apache.org/.

[5] Apache Spark. https://spark.apache.org/.

[6] Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. (2007). Dryad: Distributed
data-parallel programs from sequential building blocks. In ACM SIGOPS
Operating Systems Re- view, volume 41, pages 59–72. ACM.

[7] Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P., & Abadi, M. (2013,
November). Naiad: a timely dataflow system. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (pp. 439-455). ACM.

[8] Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Erwin, C., Galvez,
E., Hatoun, M., Maskey, A., Rasin, A., et al. (2003). Aurora: A data stream
management system. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pages 666–666. ACM.

[9] Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cher- niack, M., Hwang, J.-
H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., et al. (2005). The design of
the Borealis stream processing engine. In CIDR, volume 5, pages 277–289.

[10] Amini, L., Andrade, H., Bhagwan, R., Eskesen, F., King, R., Selo, P., Park, Y., and
Venkatramani, C. (2006). SPC: A distributed, scalable platform for data mining. In
Proceedings of the 4th International Workshop on Data Mining Standards, Services
and Platforms, pages 27–37. ACM.

[11] Loesing, S., Hentschel, M., Kraska, T., and Kossmann, D. (2012). Stormy: An
elastic and highly available streaming ser- vice in the cloud. In Proceedings of the
2012 Joint EDBT/ICDT Workshops, pages 55–60. ACM.

	

48	

[12] Neumeyer, L., Robbins, B., Nair, A., & Kesari, A. (2010, December). S4:
Distributed stream computing platform. In Data Mining Workshops (ICDMW),
2010 IEEE International Conference on (pp. 170-177). IEEE.

[13] Gedik, B., Andrade, H., Wu, K.-L., Yu, P. S., and Doo, M. (2008). SPADE: The
System S declarative stream processing engine. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, pages 1123–1134.
ACM.

[14] Gedik, B., Schneider, S., Hirzel, M., and Wu, K.-L. (2014). Elastic scaling for data
stream processing. IEEE Transactions on Parallel and Distributed Systems.,
25(6):1447–1463.

[15] Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., and Valduriez, P.
(2012). StreamCloud: An elastic and scalable data streaming system. IEEE
Transactions on Parallel and Distributed Systems., 23(12):2351–2365.

[16] Apache Zookeeper. http://zookeeper.apache.org/.

[17] Jain, N., Amini, L., Andrade, H., King, R., Park, Y., Selo, P., and Venkatramani, C.
(2006). Design, implementation, and evaluation of the linear road benchmark on the
stream processing core. In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, pages 431–442. ACM.

[18] Aniello, L., Baldoni, R., and Querzoni, L. (2013). Adaptive online scheduling in
Storm. In Proceedings of the 7th ACM International Conference on Distributed
Event-based Systems, pages 207–218. ACM.

[19] Schneider, S., Andrade, H., Gedik, B., Biem, A., and Wu, K.- L. (2009). Elastic
scaling of data parallel operators in stream processing. In IEEE International
Symposium on Parallel & Distributed Processing, 2009. IPDPS 2009., pages 1–12.
IEEE.

[20] Tatbul, N., Ahmad, Y., C ̧ etintemel, U., Hwang, J.-H., Xing, Y., and Zdonik, S.
(2008). Load management and high availability in the Borealis distributed stream
processing engine. In GeoSensor Networks, pages 66–85. Springer.

[21] Emulab. http://emulab.net/

[22] Wu, K.-L., Hildrum, K. W., Fan, W., Yu, P. S., Aggarwal, C. C., George, D. A.,
Gedik, B., Bouillet, E., Gu, X., Luo, G., et al. (2007). Challenges and experience in
prototyping a multi- modal stream analytic and monitoring application on System S.
In Proceedings of the 33rd International Conference on Very Large Databases,
pages 1185–1196. VLDB Endowment.

	

49	

[23] Zaharia, M., Das, T., Li, H., Shenker, S., and Stoica, I. (2012). Discretized streams:
An efficient and fault-tolerant model for stream processing on large clusters. In
Proceedings of the 4th USENIX conference on Hot Topics in Cloud Computing,
pages 10–10. USENIX Association.

[24] Laney, D. (2001). 3D data management: Controlling data volume, velocity and
variety. META Group Research Note, 6, 70.

[25] Bhattacharya, D., Mitra, M. (2013) Analytics on big fast data using real time stream
data processing architecture. EMC Proven Professional Knowledge Sharing

[26] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1), 107-113.

[27] Storm. http://storm.incubator.apache.org/.

[28] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron: Stream Processing at Scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (SIGMOD '15). ACM,
New York, NY, USA, 239-250. DOI=10.1145/2723372.2742788
http://doi.acm.org/10.1145/2723372.2742788

[29] Xing, Y., Zdonik, S., & Hwang, J. H. (2005, April). Dynamic load distribution in the
borealis stream processor. In Data Engineering, 2005. ICDE 2005. Proceedings.
21st International Conference on (pp. 791-802). IEEE.

[30] Xing, Y., Hwang, J. H., Çetintemel, U., & Zdonik, S. (2006, September). Providing
resiliency to load variations in distributed stream processing. In Proceedings of the
32nd international conference on Very large data bases (pp. 775-786). VLDB
Endowment.

[31] Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., & Valduriez, P. (2010, June).
Streamcloud: A large scale data streaming system. In Distributed Computing
Systems (ICDCS), 2010 IEEE 30th International Conference on (pp. 126-137).
IEEE.

[32]H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking up
data in P2P systems. CACM, 46:43–48, February 2003.

[33] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available
key-value store. In SOSP ’07, pages 205–220, 2007.

	

50	

[34] D. Kossmann, T. Kraska, S. Loesing, S. Merkli, R. Mittal, and F. Pfa↵hauser.
Cloudy: A modular cloud storage system. PVLDB, 3:1533–1536, September 2010.

[35] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system.
SIGOPS Operating Systems Review, 44:35–40, 2010.

[36] "Apache Samza" http://samza.apache.org.

[37] Gupta, S., Dutt, N., Gupta, R., & Nicolau, A. (2003, January). SPARK: A high-level
synthesis framework for applying parallelizing compiler transformations. In VLSI
Design, 2003. Proceedings. 16th International Conference on (pp. 461-466). IEEE.

[38] PC3000: https://wiki.emulab.net/wiki/pc3000

[39] D710: https://wiki.emulab.net/wiki/d710

[40] Morales, G. D. F., & Bifet, A. (2015). SAMOA: Scalable Advanced Massive Online
Analysis. Journal of Machine Learning Research, 16, 149-153.

[41] Storm Concept: https://storm.apache.org/documentation/Concepts.html

[42] Open source Storm: https://github.com/apache/storm

[43] System S:
http://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=2534

[44] Lohrmann, Björn, Peter Janacik, and Odej Kao. "Elastic Stream Processing with
Latency Guarantees.". ICDCS 2015

[45] Fu, Tom ZJ, et al. "DRS: Dynamic Resource Scheduling for Real-Time Analytics
over Fast Streams.". ICDCS 2015

[46] G. R. Bitran and R. Morabito, “State-of-the-art survey: Open queueing networks:
Optimization and performance evaluation models for dis- crete manufacturing
systems,” Production and Operations Management, vol. 5, no. 2, pp. 163–193,
1996.

[47] Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax, R., ... &
Whittle, S. (2013). MillWheel: fault-tolerant stream processing at internet scale.
Proceedings of the VLDB Endowment, 6(11), 1033-1044.

[48] Muthukrishnan, S. (2005). Data streams: Algorithms and applications. Now
Publishers Inc.

	

51	

[49] Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Xing,
Y., & Zdonik, S. B. (2003, January). Scalable Distributed Stream Processing. In
CIDR (Vol. 3, pp. 257-268).

[50] Gilles, K. A. H. N. (1974). The semantics of a simple language for parallel
programming. In In Information Processing’74: Proceedings of the IFIP Congress
(Vol. 74, pp. 471-475).

[51] Reck, M. (1993). Formally specifying an automated trade execution system. Journal
of Systems and Software, 21(3), 245-252.

[52] Goyal, A., Poon, A. D., & Wen, W. (2002). U.S. Patent No. 6,466,917. Washington,
DC: U.S. Patent and Trademark Office.

[53] Dederichs, F., Dendorfer, C., Fuchs, M., Gritzner, T. F., & Weber, R. (1992). The
design of distributed systems: an introduction to focus. Mathematisches Institut and
Institut für Informatik der technischen Universität München.

[54] Douglis, F., & Ousterhout, J. K. (1987). Process migration in the Sprite operating
system. Computer Science Division, University of California.

[55] D. DeWitt and J. Gray. Parallel database systems: the future of high performance
database systems. Communications of the ACM, 35(6):85-98, 1992.

[56] D. Eager, E. Lazowska, and J. Zahorjan. Adaptive Load Sharing in Homogeneous
Distributed Systems. IEEE Transactions on Software Engineering, 12(5):662-675,
1986.

[57] Twitter: https://twitter.com

