
Popular is Cheaper: Curtailing Memory Costs in Interactive
Analytics Engines

Mainak Ghosh, Ashwini Raina, Le Xu, Xiaoyao

Qian, Indranil Gupta

University of Illinois at Urbana-Champaign

{mghosh4,raina4,lexu1,qian13,indy}@illinois.edu

Himanshu Gupta

Oath Inc.

himanshg@oath.com

ABSTRACT

This paper targets the growing area of interactive data analytics

engines. We present a system called Getafix that intelligently de-

cides replication levels and replica placement for data segments,

in a way that is responsive to changing popularity of data access

by incoming queries. We present an optimal solution to the static

version of the problem, achieving minimality in both makespan

and replication factor. Based on this intuition we build the Getafix

system to handle queries and segments arriving in real time. We in-

tegrated Getafix into Druid, a modern open-source interactive data

analytics engine. We present experimental results using workloads

from Yahoo!’s production Druid cluster. Compared to existing work,

Getafix achieves comparable query latency (both average and tail),

while using 1.45-2.15× less memory in a private cloud. In a public

cloud, for a 100 TB hot dataset size, Getafix can cut dollar costs by

as much as 10 million annually with negligible performance impact.

CCS CONCEPTS

• Information systems → Online analytical processing en-

gines; Cloud based storage; Distributed storage; Data warehouses;

KEYWORDS

Interactive data analytics engine, Adaptive replication, Memory

reduction, Public clouds

ACM Reference Format:

Mainak Ghosh, Ashwini Raina, Le Xu, Xiaoyao Qian, Indranil Gupta and Hi-

manshu Gupta. 2018. Popular is Cheaper: Curtailing Memory Costs in

Interactive Analytics Engines. In EuroSys ’18: Thirteenth EuroSys Conference

2018, April 23–26, 2018, Porto, Portugal. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3190508.3190542

1 INTRODUCTION

Real-time analytics is projected to grow annually at a rate of 31% [42].

Apart from stream processing engines, which have received much

attention [2, 21, 30], real time analytics now also includes the bur-

geoning area of interactive data analytics engines such as Druid [51],

Redshift [4], Mesa [23], Presto [18] and Pinot [31]. These systems

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’18, April 23–26, 2018, Porto, Portugal

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00

https://doi.org/10.1145/3190508.3190542

have seen widespread adoption [33, 41] in companies which require

applications to support sub-second query response time. Applica-

tions span usage analytics, revenue reporting, spam analytics, ad

feedback, and others [24]. Typically large companies have their

own on-premise deployments while smaller companies use a public

cloud. The internal deployment of Druid at Yahoo! (now called

Oath) has more than 2000 hosts, stores petabytes of data and serves

millions of queries per day at sub-second latency scales [24].

In interactive data analytics engines, data is continuously in-

gested frommultiple pipelines including batch and streaming sources,

and then indexed and stored in a data warehouse. This data is

immutable. The data warehouse resides in a backend tier, e.g.,

HDFS [43] or Amazon S3 [12]. As data is being ingested, users

(or programs) submit queries and navigate the dataset in an inter-

active way.

The primary requirement of an interactive data analytics engine

is fast response to queries. Queries are run on multiple compute

nodes that reside in a frontend tier (cluster). Compute nodes are

expected to serve 100% of queries directly from memory
1
. Due to

limited memory, the compute nodes cannot store the entire ware-

house data, and thus need to smartly fetch and cache data locally.

Therefore, interactive data analytics engines need to navigate the

tradeoff between memory usage and query latency.

Interactive analytics engines employ two forms of parallelism.

First, data is organized into data blocks, called segments–this is stan-

dard in all engines. For instance, in Druid, hourly data from a given

source constitutes a segment. Second, a query that accesses multiple

segments can be run in parallel on each of those segments, and then

the results are collected and aggregated. Query parallelization helps

achieve low latency. Because a query (or part thereof) running at

a compute node needs to have its input segment(s) cached at that

node’s memory, segment placement is a problem that needs careful

solutions. Full replication is impossible due to the limited memory.

This paper proposes new intelligent schemes for placement of

data segments in interactive analytics engines. The key idea is to

exploit the strong evidence [8] that at any given point of time, some

data segments are more popular than others. When we analyzed

traces from Yahoo!’s Druid cluster, we found that the top 1% of data

is an order of magnitude more popular than the bottom 40%–in Fig-

ure 1, the bottom 40% popular segments account for 6% of the total

accesses while the top 1% account for 43%. Today’s deployments

either uniformly replicate all data, or require system administrators

to manually create storage tiers with different replication factors in

each tier. Only the latter approach can account for popularity, but

1
While SSDs could be used, they increase latency, thus production deployments today

are almost always in-memory.

https://doi.org/10.1145/3190508.3190542
https://doi.org/10.1145/3190508.3190542

EuroSys ’18, April 23–26, 2018, Porto, Portugal M. Ghosh et al.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700 800

C
D

F
(o

ve
r

Se
gm

en
ts

)

Segment Accesses

Figure 1: CDF of segment popularity collected from Yahoo! produc-

tion trace.

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy
 (

m
s)

Replication Factor (RF)

15 / 2500
15 / 1500
30 / 2500

Figure 2: Average Query Latency observed with varying replication

factors for different (cluster size / query injection rate) combina-

tions.

it is manual, laborious, and cannot adapt in real time to changes in

query patterns.

Figure 2 shows the query latency for two cluster sizes (15, 30

compute nodes) and query rates (1500, 2500 qps). For each con-

figuration (cluster size / query rate pair), as the replication factor

(applied uniformly across segments) is increased, we observe the

curve hits a “knee”, beyond which further replication yields mar-

ginal latency improvements. The knee for 15 / 2500 is 9 replicas,

and for the other two is 6 replicas. Our goal is to achieve the knee

of the curve for individual segments (which is a function of their

respective query loads), in an adaptive way.

Popularity is often confusedwith recency. Systems likeDruid [51]

approximate popularity by over-replicating data that was ingested

recently (few hours to days). While there is correlation with re-

cency, popularity needs to be treated as a first class citizen. Figure 3

shows our analysis of Yahoo!’s production Druid cluster. We find

that some older data can be popular (transiently or persistently).

For instance, in Figure 3 recent segments (B1) have a 50% chance of

co-occurring with segments that are up to 5 months old (A1)–we

explain this plot in detail later (§2.2). Purely using recency may

result in popular old data becoming colocated with recent data at

a compute node, overloading that node with many queries and

prolonging query completion times. Another approach to approxi-

mating popularity is to use concurrent accesses, as in Scarlett [8].

We experimentally compare our work against Scarlett.

We present a new system called Getafix
2
that adaptively decides

replication level and replica placement for segments. Getafix’s goal

is to significantly reduce usage of the most critical resource, namely

memory, without affecting query latency. Getafix is built atop in-

tuition arising from our optimal solution to the static version of

the replication problem. Our static solution is provably optimal in

both makespan (runtime of the query set) as well as memory costs.

In the dynamic scenario, Getafix makes replication decisions by

continually measuring query injection rate, segment popularity,

and current cluster state.

We implemented Getafix and integrated it into Druid [51], one of

the most popular open-source interactive data analytics engines in

use today. We present experimental results using workloads from

Yahoo! Inc.’s production Druid cluster. We compare Getafix to two

known baselines: 1) base Druid system with uniform replication,

and 2) ideas adapted from Scarlett [8], which solves replication in

batch systems like Hadoop [20], Dryad [28], etc. Compared to these,

Getafix achieves comparable query latency (both average and tail),

while saving memory by 1.45-2.15× in a private cloud and cutting

memory dollar costs in a public cloud by as much as $1.15K per

hour (for a 100 TB dataset, thus an annual cost savings of $10 M).

The main contributions of this paper are:

• We present workload characteristics of segment popularity in

interactive data analytics engines (§2.2).

• We formulate and optimally solve the static version of the seg-

ment replication problem, for a given set of queries accessing a

given set of segments (§3).

• We design the Getafix system to handle dynamic query and

segment workloads (§4). We implement Getafix into Druid, a

modern interactive data analytics engine.

• We evaluate Getafix using workload derived from Yahoo! pro-

duction clusters (§5).

2 BACKGROUND

2.1 System Model

We present a general architecture of an interactive data analytics

engine. To be concrete, we borrow some terminology from a popular

system in this space, Druid [51].

An interactive data analytics engine receives data from both

batch and streaming pipelines. The incoming data from batch

pipelines is directly stored into a backend storage tier, also called

deep storage. Data from streaming pipelines is collected by a real-

time node for a pre-defined time interval and/or till it reaches a size

threshold. The collected events are then indexed and pushed into

deep storage. This chunk of events is identified by the time interval

it was collected in (e.g., hourly, or minute-ly), and is called a seg-

ment. A segment is an immutable unit of data that can be queried,

and also placed at and replicated across compute nodes. (By default

the realtime node can serve queries accessing a segment until it is

handed off to a dedicated compute node.)

Compute nodes residing in a frontend cluster are used to serve

queries by loading appropriate segments from the backend tier.

These compute nodes are called historical nodes (HNs), and we use

these terms interchangeably.

2
In “Asterix” comics, Getafix is the name of the village druid who brews magic potions.

Popular is Cheaper: Curtailing Memory Costs in Interactive Analytics Engines EuroSys ’18, April 23–26, 2018, Porto, Portugal

 0

 20

 40

 60

 80

 100

A1A2A3A4A5B1 B2 B3 B4 B5C1C2C3C4C5

O
ve

rl
ap

 in
 S

eg
m

en
ts

(%
)

Workload/Hours

B1
A3

Figure 3: Measures overlap in segment accesses across different

hours of Yahoo! production trace. Each trace identified with a id

(A/B/C: see Table 1) and the ith hour.

Figure 4: Popularity of Segments collected from Yahoo! production

trace. X axis represents segments ordered in increasing order of cre-

ation time. Y-axis plots the number of accesses each segment saw in

a 5 hour trace from Yahoo!.

The coordinator node handles data management. Upon seeing a

segment being created, it selects a suitable compute node (HN) to

load the new segment. The coordinator can ask multiple HNs to

load the segment thereby creating segment replicas. Once loaded,

the HNs can start serving queries which access this segment.

Clients send queries to a frontend router, also called broker. A

broker node maintains a view of which nodes (historical/realtime)

are currently storing which segments. A typical query accesses

multiple segments. The broker routes the query to the relevant

HNs in parallel, collates or aggregates the responses, and sends it

back to the client.

In Druid, all internal coordination like segment loading between

coordinator and HN is handled by a Zookeeper [26] cluster. Druid

also uses MySQL [36] for storing metadata from segments and

failure recovery. As a result, the coordinator, broker, and historical

nodes are all stateless. This enables fast recovery by spinning up a

new machine.

2.2 Workload Insights

We analyze Yahoo!’s production Druid cluster workloads, span-

ning several hundreds of machines, and many months of segments

(segments are hourly). Each of the three workload traces shown

in Table 1 spans 5 hours, but at different times over 2 years. Total

Name Month Total Segments Total Accesses

A October 2016 0.6K 65K

B January 2017 9.3K 0.8M

C February 2017 1.3K 64K

Table 1: Druid traces from Yahoo! production clusters.

segments reflect the working set size, and total accesses reflect

workload size (query-segment pairs). We draw two useful observa-

tions:

Segment Access is skewed, and recent segments are gener-

ally more popular: Figure 1 plots the CDF of the access counts

for trace B (other traces yielded similar trends and are not shown).

The popularity is skewed: the top 1% of segments are accessed an

order of magnitude more than the bottom 40% segments. While

this skew has been shown in batch processing systems [8], we

are the first to confirm it for interactive analytics systems. The

skewed workload implies that some segments are more important

and selective replication is needed.

Figure 4 shows the number of times a segment was accessed in

the trace B. That is, the 4000th data point shows the total access

count for the segment created 4000 hours before this trace was

captured. We observe that segments are most popular 3 to 8 hours

after creation, and this popularity is about 2× more than that of

segments that are a week old. However, a few very old segments

continue to stay popular (e.g., bumps at about a year ago)
3
.

Some (older) segments continue to stay popular: Figure 3 shows

the level of overlap between segments accessed during an hour of

the Yahoo! trace (shown on the horizontal axis), vs. a reference

hour (B1, A3). Here, “overlap” is defined as Jaccard Similarity Coef-

ficient [49] – the size of the intersection divided by the size of the

union, across the two sets of segment accesses.

First, we observe a 50% overlap of segments in A1 with B1 and

40% between A2 and B1. This large overlap across traces collected

5 months apart confirms that some select old segments may be

popular (for a while) even in the future long after they are created.

Second, the high overlap among the segments in hours A3 through

A5 and B1 through B5 indicates that segments generated nearby in

time are highly likely to be queried together, and the length of such

a temporal locality is at least 3 hours. This gives any replication

policy ample time to adjust replication levels.

3 STATIC VERSION OF SEGMENT

REPLICATION PROBLEM

We formally define the static problem (§3.1), and our solution (§3.2).

3.1 Problem Formulation

Given m segments, n historical nodes (HNs), and k queries that

access a subset of these segments, our goal is to find a segment

allocation (segment assignment to HNs) that both: 1) minimizes

total runtime (makespan), and 2) minimizes the total number of

segment replicas. For simplicity we assume: a) each query takes

unit time to process each segment it accesses, b) initially HNs have

no segments loaded, and c) HNs are homogeneous in computation

power. Our implementation (§4) relaxes these assumptions.

3
This is sometimes due to interesting events such as Thanksgiving or holiday weeks.

EuroSys ’18, April 23–26, 2018, Porto, Portugal M. Ghosh et al.

S1

S1

S1

S1 S4

S3

S3

S1

S2

S2

S2 S1

HN1 HN2 HN3

HN	Capacity	=	(6	+	3	+	2	+	1)/3	=		4
Total	replicas	=	1	+	2	+	2	=	5

Segment	
Name

S1 S2 S3 S4

Count 6 3 2 1

Segment	Access	Counts

Figure 5: Problem depicted with balls and bin. Query-segment pairs

are balls and historical nodes represent bins. All balls of same color

access the same segment. HN capacity refers to compute capacity.

Optimal assignment shown.

Consider the query-segment pairs in the given static workload,

i.e., all pairs (Qi , Sj) where query Qi needs to access segment Sj .
Spreading these query-segment pairs uniformly across all HNs, in a

load-balanced way, automatically gives a time-optimal schedule: no

two HNs finish more than 1 time unit apart from each other. A load

balanced assignment is desirable as it always achieves the minimum

runtime (makespan) for the set of queries. However, arbitrarily (or

randomly) assigning query-segment pairs to HNsmay not minimize

the total amount of replication across HNs.

Consider an example with 6 queries accessing 4 segments. The

access characteristics C for the 4 segments are: {S1:6, S2:3, S3:2,
S4:1}. In other words, 6 queries access segment S1, 3 access S2 and
so on. A possible time-optimal (balanced) assignment of the query-

segment pair could be: bin HN1 = {S1:3, S2:1}, HN2 = {S2:2, S3:1,
S4:1}, HN3 = {S1:3, S3:1}. However, this assignment is not optimal in

replication factor (and thus storage). The total number of replicas

stored in the HNs in this assignment is 7. The minimum number of

replicas required for this example is 5. An allocation that achieves

this minimum is: HN1 = {S1:4}, HN2 = {S2:3, S4:1}, HN3 = {S1:2, S3:2}
(Figure 5).

Formally, the input to our problem is: 1) segment access counts

C = {c1, . . . cm } for k queries accessing m segments, and 2) n

HNs each with capacity ⌈

∑
i ci
n ⌉ (in our paper, “capacity” always

means “compute capacity”). We wish to find: Allocation X = {xi j =
1, if segment i is replicated at HN j}, such that it minimizes

∑
i
∑
j xi j .

We solve this problem as a colored variant of the traditional bin

packing problem [47]. A query-segment pair is treated as a ball and

a HN represents a bin. Each segment is represented by a color, and

there are as many balls of a color as there are queries accessing it.

The number of distinct colors assigned to a bin (HN) is the number

of segment replicas this HN needs to store. The problem is then to

place the balls in the bins in a load-balanced way that minimizes the

number of “splits” for all colors, i.e., the number of bins each color is

present in, summed up across all colors. This number of splits is the

input :C: Access counts for each segment

nodelist : List of HNs
1 Algorithm ModifiedFit(C,nodelist)
2 n ← Length(nodelist)

3 capacity ← ⌈
∑
Ci ∈C |Ci |

n ⌉

4 binCap ← InitArray(n, capacity)

5 priorityQueue ← BuildMaxHeap(C)

6 while !Empty(priorityQueue) do
7 (seдment , count) ← Extract(priorityQueue)

8 (le f t ,bin) ← ChooseHistoricalNode

9 (count ,binCap)

10 LoadSegment(nodelist ,bin, seдment)

11 if le f t > 0 then

12 Insert(priorityQueue, (seдment , le f t))

13 end

14 end

Algorithm 1: Generalized Allocation Algorithm.

same as the total number of segment replicas. Unlike traditional bin

packing which is NP-hard, this version of the problem is solvable

in polynomial time.

3.2 Solution

Algorithm 1 depicts our solution to the problem. The algorithm

maintains a priority queue of segments, sorted in decreasing or-

der of popularity (i.e., number of queries accessing the segment).

The algorithm works iteratively: in each iteration it extracts the

next segment Sj from the head of the queue, and allocates the

query-segment pairs corresponding to that segment to a HN, se-

lected based on a heuristic called ChooseHistoricalNode. If the

selected HN’s current capacity is insufficient to accommodate all

the pairs, then the remaining available compute capacity in that

HN is filled with a subset of it. Subsequently, the segment’s count

is updated to reflect remaining unallocated query-segment pairs,

and finally, the segment is re-inserted back into the priority queue

at the appropriate position.

The total number of iterations in this algorithm equals the total

number of replicas created across the cluster. The algorithm takes

time O((n +m) · loд(m)), i.e., in each iteration either you finish a

color or you fill up a bin. This upper bound is loose and in practice

it is significantly faster.

The ChooseHistoricalNode problem bears similarities with

segmentation in traditional operating systems [44]. We explored

three strategies to solve ChooseHistoricalNode: First Fit, Largest

Fit, and Best Fit. Of the three, we only describe Best Fit here as it

gives an optimal allocation.

Best Fit for ChooseHistoricalNode: In each iteration, we

choose the next HN that would have the least compute capacity

(space, or number of slots for balls) remaining after accommodating

all the queries for the picked segment (head of queue). Ties are

broken by picking the lower HN id. If none of the nodes have

sufficient capacity to fit all the queries for the picked segment, we

default to Largest Fit for this iteration, i.e., we choose the HN with

Popular is Cheaper: Curtailing Memory Costs in Interactive Analytics Engines EuroSys ’18, April 23–26, 2018, Porto, Portugal

Figure 6: Getafix Architecture.

the largest available capacity (ties broken by lower HN id), fill it as

much as possible, and re-insert unassigned queries for the segment

back into the sorted queue.

We call this algorithm ModifiedBestFit. Consider our running

example (Figure 5) where C is {S1:6, S2:3, S3:2, S4:1}. The algorithm
assigns S1 to HN1 and S2 to HN2. Next, it picks segment S1 (again
tie broken with S3) and assigns it to HN3 because it has sufficient

space to fit all the balls. The final assignment produced is optimal

in both makespan and replication factor.

We state our lemmas and optimality theorem here. We present

the proofs in Appendix A.

Lemma 3.1. Using ModifiedBestFit algorithm, no pair of HNs

(bins) can have more than 1 segment (color) in common.

A 2-way swap is an operation between two HNs (bins) that pre-

serves load balance but swaps an equal number of query-segment

pairs (i.e., balls), in an attempt to coalesce segment replicas (colors).

Lemma 3.2. A k-way swap, involving k HNs, is equivalent to k
2-way swaps.

Lemma 3.3. No sequence of 2-way swaps, applied to the

ModifiedBestFit algorithm’s output, can further reduce the number

of segment replicas (color splits).

Theorem 3.4. Given a set of queries, ModifiedBestFit minimizes

both total number of segment replicas and makespan.

4 GETAFIX: SYSTEM DESIGN

The Getafix system is intended to handle dynamically arriving seg-

ments as well as queries. Figure 6 shows the general architecture.

Most of Getafix’s logic resides in the Coordinator. The coordinator

manages the segment replicas, runs the ModifiedBestFit algo-

rithm (§4.1) to create a logical plan for segment allotment, and then

translates the logical plan into a physical one for replication. Addi-

tionally, it balances segment load among HNs (§4.3) and handles

heterogeneity in a deployed cluster (§4.4). We modified the broker

code to implement different query routing strategies (§4.2).

4.1 Segment Replication Algorithm

For the dynamic scenario, Getafix leverages the static solution

from §3.2, by running it in periodic rounds. At the end of each

round, it collects query load statistics, then runs the algorithm.

The algorithm returns a segment placement plan, a one-to-many

mapping of segment to HNs where they should be placed for the

current round. The placement plan dictates whether a segment

needs to be loaded to a HN or removed. In this way, the placement

plan implicitly controls the number of replicas for a segment in

each round. While it may appear that reducing replication factor

reduces query parallelism, our scheme is in fact auto-replicative,

which means that popular segments will be replicated more.

Getafix tracks popularity by having HNs track the total access

time for each segment it hosts, during the round. Total access time

is the amount of time queries spend computing on a segment. When

the round ends, HNs communicate their segment access times to

the coordinator and reset these counters. The coordinator calcu-

lates popularity via an exponentially weighted moving average.

Popularity for segment sj at round (K + 1) is calculated as:

Popularity(sj ,K + 1) =
1

2

× Popularity(sj ,K)

+ AccessTime(sj ,K + 1)

Next, the coordinator runsModifiedBestFit using Popularity(.)

values. Since the static algorithm assumes logical nodes, these

need to be mapped to physical HNs. We describe two mapping

approaches later (§4.5 and §4.4). The round duration cannot be too

long (or else the system will adapt slowly) or too short (or else the

system may not have time to collect statistics and may thrash). Our

implementation sets the round duration to 5 s, which allows us to

catch popularity changes early but not react too aggressively. This

duration can be chosen based on the segment creation frequency.

4.2 Query Routing

Query routing decides which HNs should run an incoming query

(accessing multiple segments). We explore two types of routing

schemes:

Allocation Based Query Routing (ABR): Apart from segment

placement, ModifiedBestFit also provides sufficient information

to build a query routing table. Concretely, ModifiedBestFit pro-

portionally allocates the total CPU time among each replica of a

segment. In our running example (Figure 5), segment S1 requires
6 CPU time units of which 4 should get handled by the replica in

HN1 and 2 by the replica in HN3. This means that 67% of the total

CPU resource required by S1 should be allocated to HN1, and 33%

to HN3. Hence Getafix creates a routing table that captures exact

query proportions. The full routing table for this example is depicted

in Table 2.

HN1 HN2 HN3

S1 67 0 33

S2 0 100 0

S3 0 0 100

S4 0 100 0

Table 2: Routing Table for Figure 5. Each entry represents percent-

age of queries accessing segment Si to be routed to HNj .

EuroSys ’18, April 23–26, 2018, Porto, Portugal M. Ghosh et al.

Brokers receive queries from clients. After each round the coor-

dinator sends the routing table to the brokers. For a received query,

the broker estimates its runtime (based on historical runtime data)

and routes it to a HN probabilistically according to the routing

table.

Load Based Query Routing (LBR): In ABR, routing table updates

happen periodically. Because queries complete much faster than a

round duration, ABR lags in adapting to fast changes in workload.

With Load Based Routing (LBR), each broker keeps an estimate of

every HN’s current load. Load is calculated as the number of open

connections between the broker and HN. An incoming query (or

part thereof), which needs to access a segment, is routed to the HN

that: a) has the segment already replicated at it, and b) is the least

loaded among all such HNs. Although brokers do not have a global

view of the HN load and do not use sophisticated queue estimation

techniques [40], this scheme works well in our evaluations (§5.5)

because of its small overhead.

4.3 Balancing Segment Load

For skewed segment access distributions (Figure 1), the output of

ModifiedBestFit could produce imbalanced assignment of seg-

ments to HNs. We wish to minimize the maximum memory used

by any HN in the system in order to achieve segment balancing.

Additionally, we observed that less-loaded HNs (e.g., those with

fewer segments) could be idle in some scenarios (e.g., if some seg-

ments became unpopular). In traditional systems, such imbalances

require continuous intervention by human operators. We describe

an automated segment balancing strategy that avoids this manual

work, and both reduces the max memory and increases overall CPU

utilization across HNs.

Our algorithm is greedy in nature and run after every

ModifiedBestFit round. We define segment load of a HN as the

number of segments assigned to that HN. Starting with the output

of ModifiedBestFit, the Coordinator first considers those HNs

whose segment load is higher than the system-wide average. For

each such HN, it picks its k least-popular replicas, where k is the

difference between the HN’s segment load and the system-wide

average. These are added to a global re-assign list. Next, the coordi-

nator sorts the replicas in the re-assign list in order of increasing

query load. Query load of a segment replica in a HN is the value

of the corresponding routing table entry. It picks one replica at a

time from this list and assigns it to the HN that satisfies all the

following conditions: 1) it does not already host a replica of that

segment, 2) the query load imbalance after the re-assignment will

be ≤ parameter γ , and 3) it has the least segment load of all such

HNs. We calculate:

query load imbalance = 1 −
min(QueryLoad(HNi))

max(QueryLoad(HNi))

In our evaluation (§5.3), we found that a default γ = 20% gives the

best segment balance with minimal impact on query load balance.

4.4 Handling Cluster Heterogeneity

ModifiedBestFit assumes a homogeneous cluster consisting of

machines with equal compute capacity (§3.1). We now relax that

assumption and present modifications for heterogeneous settings.

Figure 7: Physical HN Mapping problem from Figure 5 represented

as a bipartite graph.

Capacity-Aware ModifiedBestFit: Instead of assuming equal

capacity in Algorithm 1 (line 3), we distribute the total query load

proportionally among HNs based on their estimated compute ca-

pacities. To estimate the capacity of a HN, Getafix calculates the

CPU time (in microseconds) spent on processing queries at that

HN (disk IO is ignored). This data is collected by the coordina-

tor. Finer-grained capacity estimation techniques could be used

instead [11].

Stragglers: Some nodes may become stragglers due to bad mem-

ory, slow disk, flaky NIC, background tasks, etc. Capacity-Aware

ModifiedBestFit approach handles stragglers implicitly. Strag-

gler nodes will report low query CPU times as they would be

busy doing I/O and/or waiting for available cores. Capacity-Aware

ModifiedBestFit will assign lesser capacity to these node. Lesser

capacity will ensure popular segments are not assigned to these

HN.

Avoiding Manual Tiering: Today system administrators manu-

ally configure clusters into tiers by grouping machines with similar

hardware characteristics into a single tier. They use hardcoded

rules for placing segments within these tiers, with recent (popular)

segments assigned to the hot tier. Eschewing this manual approach,

Getafix continuously tracks changes in segment popularity and

cluster configuration, to automatically move popular replicas to

powerful HNs, thereby creating its own tiers. Thus, Getafix can

help avoid laborious sysadmin activity and cut opex (operational

expenses) of the cluster.

4.5 Minimizing Network Transfers

Although Auto-Tiering can improve query performance in a hetero-

geneous setting, it is unaware of underlying network bandwidth

constraints. Network bandwidth between HNs and deep storage

in today’s public clouds is often subject to provider-enforced lim-

its [34]. We next discuss approaches that make Getafix network

aware.

Consider the example shown in Figure 7. In the configuration at

timeT1 (top part of figure),HN1 has segments S2 and S3,HN2 has S4
only, andHN3 has segments S1 and S2. At timeT2, ModifiedBestFit

Popular is Cheaper: Curtailing Memory Costs in Interactive Analytics Engines EuroSys ’18, April 23–26, 2018, Porto, Portugal

expects the following configuration: E1 = {S1}, E2 = {S2, S4}, E3 =
{S1, S3}. If each HNi chooses to host the segments in Ei , then the

algorithm needs to fetch 3 segments in total. However the minimum

required is 2, given by the following assignment: E1 to HN3, E2 to
HN2, E3 to HN1.

We model this problem as a bipartite graph shown in Figure 7

where vertices on the bottom represent expected configurations

(Ej) and vertices on the top represent HNs (HNi) with the current

set of replicas. An HNi − Ej edge represents the network cost

to transfer all of Ej ’s segments to HNi (except those already at

HNi). Network transfer is minimized by finding the minimum cost

matching in this bipartite graph. We use the classical Hungarian

Algorithm [48] to find the minimum matching. It has a complexity

of O(n3) where n is the number of HNs. This is acceptable because

interactive data analytics engine clusters only have a few hundred

nodes. The coordinator uses the results to set up data transfers for

the segments to appropriate HNs.

4.6 Bootstrapping of Segment Loading

To be able to serve queries right away, we preload segments at cre-

ation time. Concretely whenever a new segment is introduced from

external datasources (created at a realtime node), Getafix immedi-

ately and eagerly replicates once at a random HN, independent of

whether queries are requesting to access it. This cuts down segment

loading time for the first few queries to touch a new segment.

Later, our replication may create more replicas (depending on

segment popularity). This is preferable than letting the realtime

nodes handle queries for fresh segments (the approach used in

today’s Druid system), which overloads the realtime node. This

early bootstrapping also allows segment count calculation to start

early.

For cases where a query fails due to the segment not being

present on any of the HNs, Getafix re-runs the query. This could

happen, for instance, if the segment was unpopular for a long

duration and was garbage collected from the HNs. Just like a fresh

segment, this segment is first loaded to a random HN. Unlike Druid

which silently ignores the segment and returns an incomplete result,

we incur slightly elevated latency but always return a complete and

correct answer.

4.7 Deleting Unnecessary Segments

The replication count for a given segment (output by

ModifiedBestFit) may go down from one round to the next. This

may occur because incoming queries are no longer accessing this

segment. For instance, in Figure 7, segment S1 is not needed in

HN1 andHN3 after configuration change. We delete such segments

to reduce memory usage. This is in line with Getafix’s goal of

eagerly and aggressively reducing memory, without filling out

memory. This is unlike traditional cache replacement algorithms

like LFU [44], etc. which only kicks in when the memory is filled.

When the workload is heavy and memory is filled, Getafix garbage

collection defaults to LFU.

However, we avoid deletion of all replicas of a given segment at

once. In cases where ModifiedBestFit cuts the number of replicas

to zero, we still retain a single replica at one (random) HN. This is

in anticipation that the segment may become popular again in the

future and hence, avoid the additional network I/O.

4.8 Garbage Collection

When memory resources are running low but new segments need

to be loaded to HNs, Getafix runs a garbage collector. It uses LFU to

remove unpopular segment replicas, but instead of absolute access

frequency, Getafix uses Popularity(.) values. Garbage collection

may completely remove a segment from all HNs, unlike deletion.

4.9 Fault-Tolerance

Brokers, HNs, and coordinator, are all stateless entities and after

a failure can be spun upwithinminutes. The only state that wemain-

tain are the segment popularity estimates used byModifiedBestFit.

We periodically checkpoint this state to a MySQL table every 1

minute. This data is not very large, and involves a few bytes per

segment in the working set. In MySQL we use batch updates instead

of incremental updates, since MySQL is optimized for bulk writes.

5 EVALUATION

We evaluate Getafix on both a private cloud (Emulab [46]) and

a public cloud (AWS [6]). We use workload traces from Yahoo!’s

production Druid cluster. We summarize our results here:

• Compared to the best existing strategy (Scarlett), Getafix uses

1.45 - 2.15× less memory, while minimally affecting makespan

and query latency.

• Compared to uniform replication (a common strategy used

today in Druid) Getafix improves average query latency by 44 -

55% while using 4 - 10× less memory.

• Capacity-Aware ModifiedBestFit improves tail query latency

by 54% when 10% of the nodes are slow and by 17 - 22% when

there is a mix of nodes in the cluster. We also save 17 - 27%

in total memory used for the second case. In addition, it can

automatically tier a heterogeneous cluster with an accuracy of

75%.

5.1 Methodology

Experimental Setup. We run our experiments in two different

clusters:

• Emulab: We deploy Druid on dedicated machines as well as on

Docker [27] containers (to constrain disk for GC experiment).

We use d430 [17] machines each with two 2.4 GHz 64-bit 8-Core

processor, 64 GB RAM, connected using a 10Gbps network. We

use NFS as the deep storage.

• AWS: We use m4.4xlarge [11] instances (16 cores, 64 GB mem-

ory), S3 [12] as the deep storage, and Amazon EBS General

Purpose SSD (gp2) volumes [7] as node local disks. EBS volumes

can elastically scale out when the allocation gets saturated.

Workloads. Data is streamed via Kafka into a Druid realtime node.

Typically, Druid queries summarize results collected in a time range.

In other words, each query has a start time and an interval. We pick

start and interval times based on production workloads–concretely

we used a trace data set from Yahoo! (similar to Figure 4), and derive

a representative distribution. We then used this distribution to set

start times and interval lengths.

EuroSys ’18, April 23–26, 2018, Porto, Portugal M. Ghosh et al.

We generate a query mixture of timeseries, top-K and groupby.

Each query type has its own execution profile. For example, groupby

queries take longer to execute compared to top-K and timeseries.

There can be considerable deviation in runtime among groupby

queries themselves based on how many dimensions are queried.

Other than the time interval, we do not vary other parameters for

these individual query types.

In our experiments, a workload generator client has its own

broker to which it sends all its queries. Each client randomly picks

a query mix ratio, and query injection rate between 50 and 150

queries/s. Instead of increasing per-client query rate (which would

cause congestion due to throttling at both client and server), we

scale query rates by linearly increasing numbers of clients and

brokers. Each experiment (ingestion and workload generator) are

run for 30 minutes.

Baselines.We compare Getafix against two baselines:

• Scarlett: Scarlett [8] is the closest existing system that handles

skewed popularity of data. While the original implementation

of Scarlett is intended for Hadoop, its ideas are general. Hence

we re-implemented Scarlett’s techniques into Druid (around

2000 lines of code).

In particular, we implemented Scarlett’s round-robin based al-

gorithm
4
. The round-robin algorithm counts the number of

concurrent accesses to a segment, as an indicator of popularity.

Scarlett gives more replicas to segments with more concurrent

accesses. We collect the concurrent segment access statistics

from the historical nodes (HNs) and send it to the coordinator to

calculate and modify the number of replicas for each segment.

The algorithm uses a configurable network budget parameter.

Since we did not cap network budget usage in Getafix, we do

not do it for Scarlett (for fairness in comparison).

• Uniform:We compare our system to the simple (but popular

in Druid deployments today) approach where all segments are

uniformly replicated. We vary the replication factor (RF) across

experiments.

Metrics. Across the entire run, we measure: 1) total memory used

across all HNs, 2) maximum memory used across all HNs, and 3)

effective replication factor. Effective replication factor is calculated

as the total number of replicas created by a system, divided by

the total number of segments ingested by the system. This metric

is useful to estimate the memory requirements of an individual

machine while provisioning a cluster (§6). We also measure: 1)

average and 99th percentile (tail) query latency and 2) makespan.

To calculate memory dollar cost savings in a public cloud, we

multiply the memory savings with cost per GB of memory. We

calculate the cost of 1 GB memory in a public cloud by solving a set

of linear equations (elided for brevity) derived from the published

instance type prices. For AWS, memory cost is $0.005 per GB per

hour.

5.2 Comparison against Baselines

Comparison vs. Scarlett: We increase the query load (number of

workload generator clients varied from 5 to 20) while keeping the

4
We avoid the priority-based algorithm since it is intended for variable file sizes, but

segment sizes in interactive analytics engines are in the same ballpark.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

5 10 15 20

R
ed

uc
tio

n
Fa

ct
or

C
om

pa
re

d
T

o
Sc

ar
le

tt

Number of Clients

Total
Maximum
99th Percentile

(a) Scarlett memory divided by Getafix total memory. Higher

is better.

-10
-5
 0
 5

 10
 15
 20

5 10 15 20
Im

pr
ov

em
en

t
C

om
pa

re
d

to
 S

ca
rl

et
t(

%
)

Number of Clients

99th Percentile Latency
Average Latency
Makespan

(b) Reduction in Makespan, Average and 99th Percentile La-

tency of Getafix compared to Scarlett. Higher is better.

Figure 8: AWSExperiments: Getafix vs. Scarlett with increasing load

(number of client varying from 5 to 20).

compute capacity (HNs) fixed (20). Figure 8a plots the savings in

Getafix’s memory usage compared to Scarlett’s. Getafix uses 1.45 -

2.15× less total memory (across HNs), and 1.72 - 1.92× less maxi-

mum memory in a single HN. Scarlett alleviates query hotspots by

creating more replicas of popular segments, while Getafix carefully

balances replicas of popular and unpopular segments to keep over-

all replication (and memory usage) low. Getafix’s memory savings

also increases as more clients are added.

Memory Dollar Cost Savings in Public Cloud: We perform a

back of the envelope calculation, based on our experimental num-

bers. For the 20 HN + 20 client experiment, Getafix has an effective

replication factor of 1.9 compared to Scarlett’s 4.2. (The heavy-tailed

nature of segment popularity from Figure 1 implies the very popu-

lar segments influence effective replication factor.) In a public cloud

deployment, where popular data size is 100 TB
5
, Getafix thus can

reducememory usage by approximately 230 TB (100 TB× (4.2 - 1.9)).

This amounts to cost savings of 230 × 10
3
GB × $0.005/GB/hour =

$1150 per hour. Annually, this would amount to $10 million worth

of savings.

To quantify the impact of this memory savings on performance,

Figure 8b plots the reduction in makespan, average and 99th per-

centile latency for Getafix compared to Scarlett. Getafix completes

5
Most present day production clusters in Google, Yahoo handle petabytes of data [23]

per day. Of this only a fraction of the data is most popular and hosted in memory. We

conservatively estimated 100 TB as the ballpark of popular data size.

Popular is Cheaper: Curtailing Memory Costs in Interactive Analytics Engines EuroSys ’18, April 23–26, 2018, Porto, Portugal

 0

 20

 40

 60

 80

 100

5 10 15 20

Im
pr

ov
em

en
t

C
om

pa
re

d
to

 U
ni

fo
rm

(%
)

Number of Clients

99th Percentile Latency
Average Latency
Makespan

(a) Improvement in makespan, 99th percentile and average

latency in Getafix compared to Uniform.

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 4 6 8 10 12 14 16 18 20

99
th

 P
er

ce
nt

ile
Q

ue
ry

 L
at

en
cy

 (
m

s)

Number of Clients

Uniform
Getafix
Scarlett

(b) Input Load vs Tail Latency Tradeoff Curve. Comparing

Getafix with Scarlett and Uniform. Lower is better.

Figure 9: AWS Experiments: Getafix vs. Baselines with increasing

load (number of client varying from 5 to 20). Uniform uses an order

of magnitude more memory compared to Getafix.

all the queries within ±5% of Scarlett for all the experiments. Query

latency is also comparable.

We conclude that compared to Scarlett, Getafix significantly

reduces memory usage in a private cloud, dollar cost in a public

cloud, with small impact on query performance.

Comparison vs. Uniform:We compare Getafix with the Uniform

strategy configured to use a replication factor of 4. We increase

load (number of clients varied from 5 to 20).

Getafix uses 4 - 10× less memory than Uniform. For latency and

makespan, see Figure 9a. Getafix improves average query latency

by 44-55%. The reason is that popular segments in the Uniform

approach are replicated infrequently compared to Getafix, causing

hotspots at HNs hosting popular segments, increasing average

query latency. We observe improvements in makespan (53 - 59%)

and 99th percentile query latency (27 - 31%) for high query load (10

or more clients). The 5 client setting is marginally worse in Getafix

because unpopular segments have more replicas in Uniform than

in Getafix. Queries accessing these segments form the tail and they

run faster in Uniform.

To evaluate Getafix’s impact on tail latency, we compare it with

Uniform and Scarlett as query load increases. Figure 9b plots the

99th percentile tail latency for all three approaches as the number

of clients increases. Getafix outperforms the baselines at tail, even

as the query load increases.

 150
 200
 250
 300
 350
 400
 450

 0 2 4 6 8 10 12 14A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy
 (

m
s)

Effective Replication Factor (RF)

Uniform
Getafix
Scarlett

Figure 10: AWS Experiments: Memory-Latency Tradeoff Curve. 20

HNs and 15 clients using: 1) Getafix, 2) Scarlett and 3) Uniform (RF:

4, 7, 10, 13). Lower is better on both the axes.

 500

 550

 600

 650

 700

 300 350 400 450 500 550A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy
 (

m
s)

Maximum Memory Used (MB)

0

10
20

3050 100

Figure 11: Emulab Experiments: Getafix – Maximum memory vs.

Query Latency Tradeoff for different γ values. Lower is better on

both axes.

Memory-Latency Tradeoff: Figure 10 plots the memory-latency

tradeoff (replication factor vs. average query latency). Points closer

to the origin are more preferable. Uniform’s tradeoff curve plateaus

at a query latency that is 2.15× higher than Getafix and Scarlett.

Getafix memory is 3.5× smaller than Uniform and 2.2× smaller than

Scarlett.

5.3 Segment Balancer Tradeoff

In §4.3, we introduced a threshold parameter γ that determines

the tradeoff space between maximum memory used and query

performance. γ = 0% implies no balancing while γ = 100% implies

aggressive balancing.

Figure 11 quantifies γ ’s impact in a cluster of 20 HNs and 15

clients (labels are γ values). As we increase γ , maximum memory

used decreases (at γ = 50% memory is reduced by 31.3%.). However,

latency decreases until γ = 20% and then starts to rise. We observed

a similar trend in makespan and 99th percentile latency (elided

for brevity). This occurs because of higher CPU utilization at HNs

hosting popular segments. At smaller γ , moving a few unpopular

segments to such HNs allows the CPU to remain busy while the

popular segment is falling in popularity. Too high γ values move

popular segments too, hurting performance.

While the above plot shows maximum memory, we also saw

savings in total memory. The largest reduction observed was 19.26%

when γ = 20%. This occurs because better query balance results in

EuroSys ’18, April 23–26, 2018, Porto, Portugal M. Ghosh et al.

 0

 20

 40

 60

 80

 100

99th Percentile
Latency

 Average
 Latency

Makespan Total Memory
 Used

Im
pr

ov
em

en
t

ov
er

G
et

af
ix

-B
(%

)
Auto-Tiering Only

Getafix-H

Figure 12: Emulab Experiments: Improvement in 99th Percentile,

Average Query latency, Makespan and Total Memory Used with

Getafix-H compared to Getafix-B. Experiment performed with 2

HNs straggling among 20.

faster completion of the queries, which in turn keeps segments in

memory for lesser time.

5.4 Cluster Heterogeneity

We evaluate the performance of Capacity-Aware

ModifiedBestFit (§4.4) (labeled Getafix-H).We consider two types

of heterogeneous environments: a) Homogeneous cluster with

stragglers and b) Heterogeneous cluster with mixed node types. We

compare these techniques against baseline Getafix (labeled Getafix-

B).

Stragglers: We inject stragglers in a homogeneous Emulab cluster

with 20 HNs and 15 clients. Two HNs are manually slowed down

by running CPU intensive background tasks, and creating memory

intensive workloads on 32GB memory using the stress command.

Capacity-Aware ModifiedBestFit does two things - i) It makes

replication decisions based on individual node capacities, and ii) As

a consequence of (i), it implicitly does Auto-tiering. To understand

the impact of (i) and (ii) separately, we implement a version of Auto-

tiering on top of Getafix-B. In that, the replication decisions are

made assuming uniform capacity, but the segments are mapped to

HNs based on sorted HN capacity. Segments with high CPU time get

mapped to HNs with high capacity. We call this the “Auto-tiering

Only” scheme.

Figure 12 shows Auto-Tiering by itself improves 99th percentile

query latency by 40% and reduces average latency by 14% when

comparedwith Getafix-B.With Getafix-H, the overall gains increase

to 55% and 28% respectively. Both Auto-Tiering Only and Getafix-

H show memory savings (16-20%). Memory improvement with

Getafix-H is slightly less than Auto-Tiering Only. We believe this is

because Capacity-aware ModifiedBestFit detects straggling HNs

as low capacity nodes and allocates lesser segment CPU time on

them. As a result, it needs to assign the remaining query load of that

segment on other HNs, which results in creating extra replicas. This

shows that given a trade-off between reducing memory vs query

latency, Capacity-aware ModifiedBestFit chooses the latter.

Tiered Clusters: Experiments are run in AWS on two cluster con-

figurations consisting of mixed EC2 instances as shown in Table 3.

Cluster-1 has 15 HNs/5 clients and Cluster-2 has 25 HNs/10 clients.

Node type Node config

(core / memory)

Cluster-1 Cluster-2

m4.4xlarge 16 / 64GB 3 nodes 4 nodes

m4.2xlarge 8 / 32GB 6 nodes 6 nodes

m4.xlarge 4 / 16GB 6 nodes 10 nodes

Table 3: AWS HN heterogeneous cluster configurations.

 0

 20

 40

 60

 80

 100

Cluster-1 Cluster-2

Im
pr

ov
em

en
t

C
om

pa
re

d
to

 G
et

af
ix

-B
(%

)

Cluster Configuration

99th Percentile Latency
Average Latency
Makespan
Total Memory Used

Figure 13: AWS Experiments: Improvement in 99th Percentile, Aver-

age Query latency, Makespan and Total Memory Used with Getafix-

H compared to Getafix-B. Experiments performed with 2 different

node mixtures and clients (refer Table 3).

16cores 8cores 4cores

Ti
m

e

16cores 8cores 4cores

Hot Warm Cold

Figure 14: AWS Experiments: Getafix-B on left, Getafix-H on right.

Effectiveness of Auto-Tiering shown using heat map. X-axis repre-

sents HNs sorted by the number of cores they have. Y-axis plots a

period of time in the duration of the experiments. For each time,

we classify HNs as hot, warm and cold (represented with 3 different

colors) based on the reported CPU time for processed queries.

Figure 13 shows that for Cluster-1, with a core mix of 48:48:24

(hot:warm:cold), Getafix-H improves the 99th percentile latency by

23% and reduces the total memory used by 18%, compared to Getafix-

B. Cluster-2 (64:48:40) has higher heterogeneity than Cluster-1. We

see that the 99th percentile latency improves by 18% and Total

Memory Used reduces by 27%. This shows that even as the hetero-

geneity gets worse, Getafix-H continues to give improvements in

latency, makespan, and memory.

To evaluate how well Getafix-H can help reduce sysadmin load

by performing automatic tiering, we draw a heat map in Figure 14.

HNs are sorted on the x axis withmore powerful HNs to the left. The

three colors (hot, warm, cold) indicate the effective load capacity of

HNs based on our run with Cluster 1. We expect to see three tiers

based on Cluster-1 config with 3 HNs assigned to Hot tier and 6

Popular is Cheaper: Curtailing Memory Costs in Interactive Analytics Engines EuroSys ’18, April 23–26, 2018, Porto, Portugal

 0

 1

 2

 3

 4

 5

99th Percentile
Latency

 Average
 Latency

Makespan Total Memory
 Used

Im
pr

ov
em

en
t

no
rm

al
iz

ed
 t

o
A

BR LBR-CC
LBR-CC+ML
ABR

Figure 15: Emulab Experiments: Comparing 3 different query rout-

ing strategies on Getafix-B – 1) LBR-CC, 2) LBR-CC+ML, 3) ABR.

Higher is better.

each to Warm and Cold tiers (Table 3). Getafix-B (plot on left) fails

to tier the cluster in a good way. Visually, Getafix-H achieves better

tiering with 3 distinct tiers. Quantitatively, Getafix-B has a tiering

accuracy of 42% and Getafix-H has 75% (net improvement of 80%).

Accuracy is calculated as number of correct tier assignments divided

by overall tier assignments. These numbers can be boosted further

with sophisticated HN capacity estimation techniques (beyond our

scope).

5.5 Comparing Query Routing Schemes

We evaluate three routing schemes, of which two are new: 1) ABR:

Allocation Based Query Routing from §4.2. 2) LBR-CC (LBR with

Connection Count): In this scheme (Druid’s default), broker routes

queries to that HN with which it has the lowest number of open

HTTP connections (indicating low query count). 3) LBR-CC+ML

(LBR with Connection Count +Minimum Load): Augments LBR-CC

by considering both open HTTP connections and the number of

waiting queries at the HN, using their sum as the metric to pick the

least loaded HN for the query.

Figure 15 compares these schemes on 15 HNs/10 clients homoge-

neous Emulab cluster. The two LBR schemes are comparable, and

are better than ABR, especially on total memory. This difference

is because of the following reason. While ABR knows the exact

segment allocation proportions, that information is only updated

periodically (every round), making ABR slow to react to dynamic

cluster conditions and changing segment popularity trends. Overall,

Getafix works well with Druid’s existing LBR-CC scheme.

5.6 Benefit From Garbage Collection

When the data size of the working set (queried data) exceeds the

total memory available across the HNs, queries are processed out-

of-core (e.g., disk). In such scenarios the Garbage Collector (GC) is

crucial to performance–it allows freshly minted segments gaining

in popularity to be loaded and queried.

We emulated smaller disks and Figure 16 plots the improvement

in tail latency (95th and 99th percentile) when the GC is used com-

pared to when GC is disabled. The GC improves tail latency by 25%

to 55%. As disk sizes increase, the frontend tier can accommodate

more segments and the marginal gain from GC falls. We recom-

mend the GC always be enabled, but especially in circumstances

 0

 20

 40

 60

 80

 100

50 100 150 200

Im
pr

ov
em

en
t

C
om

pa
re

d
T

o
w

/o
 G

C
(%

)

Disk Size (MB)

95th Percentile Latency
99th Percentile Latency

Figure 16: Emulab Experiment: Improvement in 99th and 95th per-

centile query latency for Getafix with GC compared to without GC.

Disk sizes are varied from 50 - 200 MB.

such as a large differential between backend and frontend storage

sizes, or low query locality, or wimpy frontend tiers.

6 DISCUSSION

Saving Memory costs in practice: System administrators use

various techniques to estimate how much memory to provision in

an interactive analytics cluster. Some of these are based onworkload

profiling, which is beyond our scope. However, a rule of thumb

to calculate per-HN memory is to multiply the expected working

set data size with the effective replication factor and divide by

the number of HNs. Since Getafix significantly reduces replication

factor (∼ 2× compared to Scarlett), it can reduce capital expenses

(Capex) in a private cloud and dollar expenses in a public cloud. In

disaggregated datacenters, Getafix’s dollar cost savings would be

higher as memory cost is decoupled from CPU costs.

Getafix savings extend to Disk Storage: If one were to increase

the working set of (popular) segments without increasing cluster

size or per-HN memory, a cutoff point will be reached when cluster

memory no longer suffices and HNs will need to use out-of-core

memory (e.g., disk). Compared to Druid (uniform) and Scarlett,

Getafix reaches this cutoff point much later (at higher dataset sizes).

Beyond the cutoff point, Getafix is still preferable to competing

systems because it is able to fit more segments in memory, and

thus it minimizes disk usage. Extremely large datasets where disk

dominates memory are not typical of production scenarios today

as high latencies will necessitate scaling out the cluster anyway.

Getafix vs. On-demand Replication: Consider the (alternative)

pure on-demand approach which keeps one replica per segment

in the cluster, but creates an extra replica on-demand per query.

In comparison, Getafix is “sticky" and retains a recently-created

replica, expecting that this potentially-popular segment will be

used by an impending query. Thus, Getafix will have significantly

less network usage and lower query latency than the pure on-

demand approach. This is also borne out by the observations from

production that query popularity persists for a while, and that

segment transfer times are significant.

Overhead of Getafix’s Planning Algorithm: In a system with

20 HNs, 15 brokers, 30 segments, Getafix’s planning algorithm took

a median time of 211.5 ms, much smaller than the reconfiguration

period of 5000 ms. This planning overhead is completely hidden

EuroSys ’18, April 23–26, 2018, Porto, Portugal M. Ghosh et al.

from the end user because queries are scheduled in parallel with

this planning.

7 RELATEDWORK

Allocation Problem: Our problem has similarities to the data

allocation problem [37] in databases which tries to optimize for per-

formance [39, 50] and/or network bandwidth [10]. A generalized

version of the problem has been shown to be NP-hard [37]. Typical

heuristics used are best fit and first fit [13, 25] or evolutionary algo-

rithms [39]. This problem is different from the one Getafix solves.

In databases, each storage node also acts as a client site generating

its own characteristic access pattern. Thus, performance optimiza-

tion often involves intelligent data localization through placement

and replication. On the contrary, brokers in Druid receive client

queries and are decoupled from the compute nodes in the system.

Getafix aggregates the access statistics from different brokers to

make smart segment placement decisions. Some of Getafix’s ideas

may be applicable in traditional databases.

Workload-Aware Data Management:We are not the first to use

popularity for data management. Nectar [22] trades off storage for

CPU by not storing unpopular data, instead, recomputing it on

the fly. In our setting neither queries generate intermediate data,

nor can our input data be regenerated, so Nectar’s techniques do

not apply. Workload-aware data partitioning and replication has

been explored in Schism [16], whose techniques minimize cross-

partition transactions in graph databases. There are other works

which look at adaptive partitioning for OLTP systems [38] and

NoSQL databases [15] respectively, however they do not explore

Druid-like interactive analytics engines. E-Store [45] proposes an

elastic partition solution for OLTP databases by partitioning data

into two tiers. The idea is to assign data with different levels of

popularity into different sizes of data chunks so that the system can

smoothly handle load peaks and popularity skew. This approach is

ad-hoc and an adaptive strategy like Getafix is easier to manage.

Saving Memory and Storage: Facebook’s f4 [35] uses erasure

codes for “warm” BLOB data like photos, videos, etc., to reduce

storage overhead while still ensuring fault tolerance. These are

optimizations at the deep storage tier and orthogonal to our work.

Parallel work like BlowFish [29], have looked at reducing storage by

compressing data while still providing guarantees on performance.

It is complementary to our approach and can be combined with

Getafix.

Interactive data analytics engines: Current work in interactive

data analytics engines [3, 14, 18, 32] focus on query optimization

and programming abstractions. They are transparent to the under-

lying memory challenges of replication and thus, to performance.

In such scenarios, Getafix can be implemented inside the storage

substrate [43]. Since Getafix uses data access times and not query

semantics, it can reduce memory usage generally.

Amazon Athena [5] and Presto [18] attempt to co-locate queries

with the data in HDFS, but these systems do not focus on data

management. Details about these systems are sketchy (Athena is

closed-source, Presto has no paper), but we believe Getafix’s ideas

can be amended to work with these systems. Athena’s cost model

is per TB processed and, we believe, is largely driven by memory

usage. Getafix’s cost model is finer-grained, and focuses on memory,

arguably the most constrained resource today. Nevertheless, these

cost models are not mutually exclusive and could be merged.

Systems like Druid [51], Pinot [31], Redshift [4], Mesa [23], cou-

ple datamanagement with rich query abstractions. Our implementa-

tion inside Druid shows that Getafix is effective in reducingmemory

for this class of systems, with the exception that Mesa allows up-

dates to data blocks (Getafix, built in Druid, assumes segments are

immutable).

Cluster Heterogeneity: Optimizing query performance in hetero-

geneous environments is well-studied in batch processing systems

like Hadoop [1, 9, 19, 52]. Typical approaches involve estimating per

job progress and then speculatively re-scheduling execution. Real

time system query latencies tend to be sub-second which makes

the batch solutions inapplicable.

8 SUMMARY

We have presented replication techniques intended for interactive

data analytics engines applicable to systems like Druid, Pinot, etc.

Our techniques use latest (running) popularity of data segments to

determine their placement and replication level at compute nodes.

Our solution to the static query/segment placement problem is prov-

ably optimal in both makespan and total memory used. Our system,

called Getafix, generalizes the solution to the dynamic version of

the problem, and effectively integrates adaptive and continuous seg-

ment placement/replication with query routing. We implemented

Getafix into Druid, the most popular open-source interactive analyt-

ics engine. Our experiments use workloads derived from production

traces in Yahoo!’s production Druid cluster. Compared to the best

existing technique (Scarlett), Getafix uses 1.45 - 2.15× less memory,

while minimally affecting makespan. In a public cloud, for a 100 TB

hot dataset size, Getafix can cut memory dollar costs by as much

as 10 million dollars annually with negligible performance impact.

ACKNOWLEDGMENTS

This work was supported in part by: NSF CNS 1409416, NSF CNS

1319527, AFOSR/AFRL FA8750-11-2-0084, and a generous gift from

Microsoft. We thank our shepherd Dushyanth Narayanan and the

anonymous reviewers for their invaluable input. We thank U. Utah

for Emulab support.

A OPTIMALITY PROOF

Wenow formally prove thatModifiedBestFitminimizes the amount

of replication among all load balanced assignments.

A.1 Balls and Bin Problem

For ease of exposition, we restate the problem using the balls and

bins abstraction. We havem balls ofp colors (p ≤ m) andn bins. The

bins have capacity ⌈mn ⌉. There are many load balanced assignments

possible for the balls in the bins. The cost of each bin (in a given

assignment) is calculated by counting the number of unique color

balls in it. The sum of bin costs gives the cost of the assignment.

This cost is equivalent to the number of replicas created by our

algorithm in §3.1. We claim that ModifiedBestFit minimizes the

cost for a load balanced assignment of balls in bins.

Popular is Cheaper: Curtailing Memory Costs in Interactive Analytics Engines EuroSys ’18, April 23–26, 2018, Porto, Portugal

A.2 Proofs

Lemma A.1. Using ModifiedBestFit algorithm, no pair of HNs

(bins) can have more than 1 segment (color) in common.

Proof. Assume there is a pair of binsb1 andb2 that have 2 colors
in common, c1 and c2. Either of c1 or c2 must have been selected first

to be placed. W.l.o.g. assume c1 was selected first (in the ordering

of colors during the assignment). Since c1 is split across b1 and b2,
it must have filled one of the bins. However, this means that c2
could not have been in bin b1 as it is selected only afterwards. This

contradicts our assumption. □

Next, we define an important operation called swap.

Swap Operation: A 2-way swap operation takes an equal number

of balls from 2 bins and swaps them. A k-way swap similarly creates

a chain (closed loop) of k swaps across k bins.

Lemma A.2. A k-way swap, involving k HNs, is equivalent to k
2-way swaps.

Proof. We prove this by induction.

Base Step: Trivially true when k = 2.

Induction Step: Assume a k-way swap is equivalent to k 2-way

swaps. Let us add another (k + 1)th node HNk+1 to a k-way chain

HN1,HN2, . . . ,HNk to make a (k + 1) −way swap chain. However,

this can be written as a series of 2-way swaps: i) a k-way swap,

executed as (k − 1) 2-way swaps among HN1,HN2, . . . ,HNk (as

in the induction step, but skipping the last swap), followed by ii) a

2-way swap between HNk and HNk+1, and then iii) a 2-way swap

between nodeHNk+1 andHN1. This creates a chain of (k+1) 2-way
swaps. □

Lemma A.3. No sequence of 2-way swaps, applied to the

ModifiedBestFit algorithm’s output, can further reduce the number

of segment replicas (color splits).

Proof. Let’s define successful swap as a swap which reduces the

assignment cost (sum of unique colors across all bins). Note that

for a successful 2-way swap, a prerequisite is the existence of at

least one common color across both bins in the successful swap.

We prove this by contradiction. Lets say a successful swap is

possible. From Lemma A.1, we know that there is at most one

common color between any pair of bins. (Note that by definition, a

swap must move back an equal number of balls from b2 to b1.) This
means that there exist 2 such bins whose common color ball can

be moved completely to one of the bins without causing additional

color splits due to the balls moved back from b2 to b1.
Lets assume that bins b1 and b2 have common balls of green

color in them. Bin b1 has n1 green color balls and bin b2 has n2 balls
of the same color. W.l.o.g. assume all the green color balls from

bin b1 are moved to b2, in order to consolidate balls (and therefore

lower the number of color splits). An equal number of balls need to

be moved back. Three cases arise:

Case 1: n1 > n2: In the original assignment order of balls

into bins, consider the first instance when green color balls were

assigned to either bin b1 or bin b2. Since n1 > n2, then it must be

true that bin b1 must have filled with color green before color green

hit b2 – this can be proved by contradiction. If b2 had filled first

instead, either: 1) all (n1 + n2) balls would have fit in b2 (which did

not occur), or 2) b2’s n2-sized hole must have been larger than b1’s
n1-sized hole (which is not true). Essentially bin b1 was selected
first because it had the largest hole (this is Best Fit, and since none

of the holes are large enough to accommodate all green color balls,

we pick the largest hole).

Next, in the swapping operation, we swap n1 green color balls

from b1 to b2. Thus we need to find n1 balls from b2 to swap back.

When n1 balls of green color were put into b1, it is not possible
that b2 had n1 or more empty slots available (otherwise b2 would
have been picked for n1 instead of b1). This means that to find n1
balls to swap back from b2, we have to pick from balls that arrived

before color green did. But by definition, any such color (say, red)

would have had at least (n1 + n2) balls (due to the priority order),

and because b2 still has holes when green color arrives later, any

such previously red-colored balls would have been wholly put into

b2. However, picking this color for swapping would cause a further

split (in color red) as we can only move back n1(< n1 + n2) balls
from b2 to b1. This means that the swap cannot be successful.

Case 2: n1 < n2: Analogous to Case 1, we can show that bin

b2 filled first with color green before bin b1 did. To find n1 balls to
move back from bin b2 to b1, we have to choose among balls that

arrived before color green in bin b2, since green color was the last

to arrive at b2 (i.e., filled it out). But any such previous color red

must have at least (n1 + n2) balls in b2 (due to the priority order),

and choosing red would create an additional color split (in color

red). This cannot be a successful swap.

Case 3: n1 = n2: W.l.o.g., assume b1 was filled first with n1
green color balls, then after some intermediate bins were filled,

n2 green color balls were put into b2. All such intermediate bins

must also have had exactly n1-sized holes (due to the priority order,

Best Fit strategy, and presence of n2 color green balls in the queue).

Bin b2 cannot get any of these intermediate balls as it cannot have

more than n1 slots when b1 was filled with green color (otherwise

it would have been picked instead of b1). For our swap operation,

this means one can only choose to swap back a color red (from

b2 to b1) that was put into b2 before b1 was filled with green color.

However, this means color red must have had at least (n1+n2) balls
put into b2 (due to the priority order), and moving back only some

of these balls will cause an additional split (for red). This cannot be

a successful swap.

□

Since a k-way swap is equivalent to k 2-way swaps (Lemma A.2),

no swap strategy can further reduce the number of segment replicas,

computed by ModifiedBestFit.

TheoremA.4. Given a set of queries, ModifiedBestFitminimizes

both total number of segment replicas and makespan.

Proof. By Lemma A.3, ModifiedBestFit generates load bal-

anced allocation that minimizes the sum of unique color balls across

all bins, which in turn minimizes replication. Load balanced al-

location of query-segment pairs implies the completion time is

minimized. □

EuroSys ’18, April 23–26, 2018, Porto, Portugal M. Ghosh et al.

REFERENCES

[1] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N. Vijaykumar.

2012. Tarazu: Optimizing MapReduce on Heterogeneous Clusters. In Proceedings

of the Seventeenth International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS XVII). ACM, New York, NY,

USA, 61–74. https://doi.org/10.1145/2150976.2150984

[2] Yanif Ahmad, Bradley Berg, Uǧur Cetintemel, Mark Humphrey, Jeong-Hyon

Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaemmanouil, Alexander Rasin,

Nesime Tatbul, Wenjuan Xing, Ying Xing, and Stan Zdonik. 2005. Distributed

Operation in the Borealis Stream Processing Engine. In Proceedings of the 2005

ACM International Conference on Management of Data (SIGMOD ’05). ACM, New

York, NY, USA, 882–884. https://doi.org/10.1145/1066157.1066274

[3] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.

Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,

Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach

to Balancing Correctness, Latency, and Cost in Massive-scale, Unbounded, Out-

of-order Data Processing. Proceedings of the VLDB Endowment 8, 12 (Aug. 2015),

1792–1803. https://doi.org/10.14778/2824032.2824076

[4] Amazon. 2012. Redshift. (2012). Retrieved February 28, 2018 from https:

//aws.amazon.com/redshift/

[5] Amazon. 2018. Athena. (2018). Retrieved February 28, 2018 from https://aws.

amazon.com/athena/

[6] Amazon. 2018. AWS. (2018). Retrieved February 28, 2018 from https://aws.

amazon.com/

[7] Amazon. 2018. EBS. (2018). Retrieved February 28, 2018 from https://aws.

amazon.com/ebs/pricing/

[8] Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth Kandula, Albert Green-

berg, Ion Stoica, Duke Harlan, and Ed Harris. 2011. Scarlett: Coping with Skewed

Content Popularity in Mapreduce Clusters. In Proceedings of the Sixth Confer-

ence on Computer Systems (EuroSys ’11). ACM, New York, NY, USA, 287–300.

https://doi.org/10.1145/1966445.1966472

[9] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi

Lu, Bikas Saha, and Edward Harris. 2010. Reining in the Outliers in Map-reduce

Clusters Using Mantri. In Proceedings of the 9th USENIX Conference on Operating

Systems Design and Implementation (OSDI ’10). USENIX Association, Berkeley,

CA, USA, 265–278. http://dl.acm.org/citation.cfm?id=1924943.1924962

[10] Peter M. G. Apers. 1988. Data Allocation in Distributed Database Systems. ACM

Transactions on Database Systems 13, 3 (Sept. 1988), 263–304. https://doi.org/10.

1145/44498.45063

[11] Amazon Web Services (AWS). 2018. Instance Types. (2018). Retrieved Feb-

ruary 28, 2018 from http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

instance-types.html

[12] Amazon Web Services (AWS). 2018. S3. (2018). Retrieved February 28, 2018 from

https://aws.amazon.com/s3/

[13] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998. Cache-

conscious Data Placement. In Proceedings of the Eighth International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS

VIII). ACM, New York, NY, USA, 139–149. https://doi.org/10.1145/291069.291036

[14] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel

Fisher, John C. Platt, James F. Terwilliger, and John Wernsing. 2014. Trill: A High-

performance Incremental Query Processor for Diverse Analytics. Proceedings of

the VLDB Endowment 8, 4 (Dec. 2014), 401–412. https://doi.org/10.14778/2735496.

2735503

[15] Francisco Cruz, Francisco Maia, Miguel Matos, Rui Oliveira, João Paulo, José

Pereira, and Ricardo Vilaça. 2013. MeT: Workload Aware Elasticity for NoSQL. In

Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys

’13). ACM, New York, NY, USA, 183–196. https://doi.org/10.1145/2465351.2465370

[16] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: A

Workload-driven Approach to Database Replication and Partitioning. Proceedings

of the VLDB Endowment 3, 1-2 (Sept. 2010), 48–57. https://doi.org/10.14778/

1920841.1920853

[17] Emulab. 2018. d430. (2018). Retrieved February 28, 2018 from https://wiki.

emulab.net/wiki/d430

[18] Facebook. 2013. PrestoDB. (2013). Retrieved February 28, 2018 from https:

//prestodb.io/

[19] Zacharia Fadika, Elif Dede, Jessica Hartog, and Madhusudhan Govindaraju. 2012.

MARLA: MapReduce for Heterogeneous Clusters. In Proceedings of the 2012

12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGRID ’12). IEEE Computer Society, Washington, DC, USA, 49–56. https:

//doi.org/10.1109/CCGrid.2012.135

[20] The Apache Software Foundation. 2014. Hadoop. (2014). Retrieved February 28,

2018 from https://hadoop.apache.org

[21] The Apache Software Foundation. 2015. Storm. (2015). Retrieved February 28,

2018 from https://storm.apache.org

[22] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan

Yu, and Li Zhuang. 2010. Nectar: Automatic Management of Data and Computa-

tion in Datacenters. In Proceedings of the 9th USENIX Conference on Operating

Systems Design and Implementation (OSDI ’10). USENIX Association, Berkeley,

CA, USA, 75–88. http://dl.acm.org/citation.cfm?id=1924943.1924949

[23] Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan, Kevin Lai, Shuo

Wu, Sandeep Dhoot, Abhilash Rajesh Kumar, Ankur Agiwal, Sanjay Bhansali,

Mingsheng Hong, Jamie Cameron, Masood Siddiqi, David Jones, Jeff Shute, An-

drey Gubarev, Shivakumar Venkataraman, and Divyakant Agrawal. 2016. Mesa:

A Geo-replicated Online Data Warehouse for Google’s Advertising System. Com-

mun. ACM 59, 7 (June 2016), 117–125. https://doi.org/10.1145/2936722

[24] Himanshu Gupta. 2016. Beyond Hadoop at Yahoo!: Interactive analytics with

Druid. Talk. (28 September 2016). Retrieved February 28, 2018 from https:

//conferences.oreilly.com/strata/strata-ny-2016/public/schedule/detail/51640

[25] Yu-Ju Hong and Mithuna Thottethodi. 2013. Understanding and Mitigating the

Impact of Load Imbalance in the Memory Caching Tier. In Proceedings of the 4th

Annual Symposium on Cloud Computing (SOCC ’13). ACM, New York, NY, USA,

Article 13, 17 pages. https://doi.org/10.1145/2523616.2525970

[26] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.

ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings

of the 2010 USENIX Conference on Annual Technical Conference (USENIXATC’10).

USENIX Association, Berkeley, CA, USA, 11–11. http://dl.acm.org/citation.cfm?

id=1855840.1855851

[27] Docker Inc. 2018. Docker. (2018). Retrieved February 28, 2018 from https:

//www.docker.com/

[28] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.

Dryad: Distributed Data-parallel Programs from Sequential Building Blocks. In

Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer

Systems 2007 (EuroSys ’07). ACM, New York, NY, USA, 59–72. https://doi.org/10.

1145/1272996.1273005

[29] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. 2016. BlowFish: Dynamic

Storage-performance Tradeoff in Data Stores. In Proceedings of the 13th Usenix

Conference on Networked Systems Design and Implementation (NSDI’16). USENIX

Association, Berkeley, CA, USA, 485–500. http://dl.acm.org/citation.cfm?id=

2930611.2930643

[30] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.

2015. Twitter Heron: Stream Processing at Scale. In Proceedings of the 2015 ACM

International Conference on Management of Data (SIGMOD ’15). ACM, New York,

NY, USA, 239–250. https://doi.org/10.1145/2723372.2742788

[31] LinkedIn. 2015. Pinot. (2015). Retrieved February 28, 2018 from https://github.

com/linkedin/pinot/wiki

[32] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-

akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analysis

of Web-scale Datasets. Proceedings of the VLDB Endowment 3, 1-2 (Sept. 2010),

330–339. https://doi.org/10.14778/1920841.1920886

[33] Metamarkets. 2018. Powered by Druid. (2018). Retrieved February 28, 2018 from

http://druid.io/druid-powered.html

[34] Microsoft. 2018. Blob Storage. (2018). Retrieved February 28, 2018 from https:

//azure.microsoft.com/en-us/services/storage/blobs/

[35] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin,

Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang,

and Sanjeev Kumar. 2014. f4: Facebook’s Warm BLOB Storage System. In

Proceedings of the 11th USENIX Conference on Operating Systems Design and

Implementation (OSDI ’14). USENIX Association, Berkeley, CA, USA, 383–398.

http://dl.acm.org/citation.cfm?id=2685048.2685078

[36] Oracle. 2018. MySQL. (2018). Retrieved February 28, 2018 from https://www.

mysql.com

[37] M. Tamer Ozsu and P. Valduriez. 1991. Principles of Distributed Database Systems.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[38] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware Automatic

Database Partitioning in Shared-nothing, Parallel OLTP Systems. In Proceedings

of the 2012 ACM International Conference on Management of Data (SIGMOD ’12).

ACM, New York, NY, USA, 61–72. https://doi.org/10.1145/2213836.2213844

[39] Tilmann Rabl and Hans-Arno Jacobsen. 2017. Query Centric Partitioning and

Allocation for Partially Replicated Database Systems. In Proceedings of the 2017

ACM International Conference on Management of Data (SIGMOD ’17). ACM, New

York, NY, USA, 315–330. https://doi.org/10.1145/3035918.3064052

[40] Jeff Rasley, Konstantinos Karanasos, Srikanth Kandula, Rodrigo Fonseca, Mi-

lan Vojnovic, and Sriram Rao. 2016. Efficient Queue Management for Clus-

ter Scheduling. In Proceedings of the Eleventh European Conference on Com-

puter Systems (EuroSys ’16). ACM, New York, NY, USA, Article 36, 15 pages.

https://doi.org/10.1145/2901318.2901354

[41] Amazon Redshift. 2018. Customer Success. (2018). Retrieved February 28, 2018

from https://aws.amazon.com/redshift/customer-success/

[42] Research andMarkets. 2015. StreamingAnalyticsMarket by Verticals -Worldwide

Market Forecast & Analysis (2015 - 2020). Report. (June 2015). Retrieved February

28, 2018 from https://www.researchandmarkets.com/research/mpltnp/streaming

[43] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.

The Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th Sympo-

sium on Mass Storage Systems and Technologies (MSST) (MSST ’10). IEEE Computer

https://doi.org/10.1145/2150976.2150984
https://doi.org/10.1145/1066157.1066274
https://doi.org/10.14778/2824032.2824076
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://aws.amazon.com/athena/
https://aws.amazon.com/athena/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/ebs/pricing/
https://aws.amazon.com/ebs/pricing/
https://doi.org/10.1145/1966445.1966472
http://dl.acm.org/citation.cfm?id=1924943.1924962
https://doi.org/10.1145/44498.45063
https://doi.org/10.1145/44498.45063
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://aws.amazon.com/s3/
https://doi.org/10.1145/291069.291036
https://doi.org/10.14778/2735496.2735503
https://doi.org/10.14778/2735496.2735503
https://doi.org/10.1145/2465351.2465370
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.14778/1920841.1920853
https://wiki.emulab.net/wiki/d430
https://wiki.emulab.net/wiki/d430
https://prestodb.io/
https://prestodb.io/
https://doi.org/10.1109/CCGrid.2012.135
https://doi.org/10.1109/CCGrid.2012.135
https://hadoop.apache.org
https://storm.apache.org
http://dl.acm.org/citation.cfm?id=1924943.1924949
https://doi.org/10.1145/2936722
https://conferences.oreilly.com/strata/strata-ny-2016/public/schedule/detail/51640
https://conferences.oreilly.com/strata/strata-ny-2016/public/schedule/detail/51640
https://doi.org/10.1145/2523616.2525970
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://www.docker.com/
https://www.docker.com/
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1145/1272996.1273005
http://dl.acm.org/citation.cfm?id=2930611.2930643
http://dl.acm.org/citation.cfm?id=2930611.2930643
https://doi.org/10.1145/2723372.2742788
https://github.com/linkedin/pinot/wiki
https://github.com/linkedin/pinot/wiki
https://doi.org/10.14778/1920841.1920886
http://druid.io/druid-powered.html
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
http://dl.acm.org/citation.cfm?id=2685048.2685078
https://www.mysql.com
https://www.mysql.com
https://doi.org/10.1145/2213836.2213844
https://doi.org/10.1145/3035918.3064052
https://doi.org/10.1145/2901318.2901354
https://aws.amazon.com/redshift/customer-success/
https://www.researchandmarkets.com/research/mpltnp/streaming

Popular is Cheaper: Curtailing Memory Costs in Interactive Analytics Engines EuroSys ’18, April 23–26, 2018, Porto, Portugal

Society, Washington, DC, USA, 1–10. https://doi.org/10.1109/MSST.2010.5496972

[44] William Stallings. 2005. Operating Systems: Internals and Design Principles Edition:

5. Pearson.

[45] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore,

Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store: Fine-

grained Elastic Partitioning for Distributed Transaction Processing Systems.

Proceedings of the VLDB Endowment 8, 3 (Nov. 2014), 245–256. https://doi.org/

10.14778/2735508.2735514

[46] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac

Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. 2002. An Integrated

Experimental Environment for Distributed Systems and Networks. In Proceedings

of the Fifth Symposium on Operating Systems Design and Implementation (OSDI

’02). USENIX Association, Boston, MA, 255–270.

[47] Wikipedia. 2018. Bin Packing Problem. (2018). Retrieved February 28, 2018 from

https://en.wikipedia.org/wiki/Bin_packing_problem

[48] Wikipedia. 2018. Hungarian Algorithm. (2018). Retrieved February 28, 2018

from http://en.wikipedia.org/wiki/Hungarian_algorithm

[49] Wikipedia. 2018. Jaccard index. (2018). Retrieved February 28, 2018 from

https://en.wikipedia.org/wiki/Jaccard_index

[50] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. 1997. An Adaptive Data Replica-

tion Algorithm. ACM Transactions on Database Systems 22, 2 (June 1997), 255–314.

https://doi.org/10.1145/249978.249982

[51] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep

Ganguli. 2014. Druid: A Real-time Analytical Data Store. In Proceedings of the

2014 ACM International Conference on Management of Data (SIGMOD ’14). ACM,

New York, NY, USA, 157–168. https://doi.org/10.1145/2588555.2595631

[52] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica.

2008. Improving MapReduce Performance in Heterogeneous Environments.

In Proceedings of the 8th USENIX Conference on Operating Systems Design and

Implementation (OSDI ’08). USENIX Association, Berkeley, CA, USA, 29–42. http:

//dl.acm.org/citation.cfm?id=1855741.1855744

https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.14778/2735508.2735514
https://doi.org/10.14778/2735508.2735514
https://en.wikipedia.org/wiki/Bin_packing_problem
http://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Jaccard_index
https://doi.org/10.1145/249978.249982
https://doi.org/10.1145/2588555.2595631
http://dl.acm.org/citation.cfm?id=1855741.1855744
http://dl.acm.org/citation.cfm?id=1855741.1855744

	Abstract
	1 Introduction
	2 Background
	2.1 System Model
	2.2 Workload Insights

	3 Static Version of Segment Replication Problem
	3.1 Problem Formulation
	3.2 Solution

	4 Getafix: System Design
	4.1 Segment Replication Algorithm
	4.2 Query Routing
	4.3 Balancing Segment Load
	4.4 Handling Cluster Heterogeneity
	4.5 Minimizing Network Transfers
	4.6 Bootstrapping of Segment Loading
	4.7 Deleting Unnecessary Segments
	4.8 Garbage Collection
	4.9 Fault-Tolerance

	5 Evaluation
	5.1 Methodology
	5.2 Comparison against Baselines
	5.3 Segment Balancer Tradeoff
	5.4 Cluster Heterogeneity
	5.5 Comparing Query Routing Schemes
	5.6 Benefit From Garbage Collection

	6 Discussion
	7 Related Work
	8 Summary
	Acknowledgments
	A Optimality Proof
	A.1 Balls and Bin Problem
	A.2 Proofs

	References

