
Leveraging Cloud Computing to Make Autonomous Vehicles Safer

Peter Schafhalter1 Sukrit Kalra1 Le Xu2 Joseph E. Gonzalez1 Ion Stoica1

Abstract— The safety of autonomous vehicles (AVs) depends
on their ability to perform complex computations on high-
volume sensor data in a timely manner. Their ability to run
these computations with state-of-the-art models is limited by
the processing power and slow update cycles of their onboard
hardware. In contrast, cloud computing offers the ability to
burst computation to vast amounts of the latest generation of
hardware. However, accessing these cloud resources requires
traversing wireless networks that are often considered to be too
unreliable for real-time AV driving applications.

Our work seeks to harness this unreliable cloud to enhance
the accuracy of an AV’s decisions, while ensuring that it can
always fall back to its on-board computational capabilities. We
identify three mechanisms that can be used by AVs to safely
leverage the cloud for accuracy enhancements, and elaborate
why current execution systems fail to enable these mechanisms.
To address these limitations, we provide a system design based
on the speculative execution of an AV’s pipeline in the cloud,
and show the efficacy of this approach in simulations of complex
real-world scenarios that apply these mechanisms.

I. INTRODUCTION

Autonomous Vehicles (AVs) are predicted to make our
roads significantly safer by eliminating the vast majority of
traffic accidents that contributed to 38,824 fatalities in 2020
in the U.S. alone [1]. However, to fulfill their potential, AVs
must surpass the safety levels of human drivers and handle
a diverse set of challenging driving scenarios [2,3]. Prior
works [4]–[6] have demonstrated the inextricability of driving
safety with the accuracy of the AV’s computational pipeline,
which is governed by the following three characteristics:
High-fidelity data. Integrating data from a wide array of
high-fidelity sensors can significantly enhance computational
accuracy [7]. As a result, newer generations of AVs seek to
expand the number and quality of onboard sensors, such as
cameras, LiDARs, and radars. For example, Waymo’s 5th-
generation AVs feature 29 cameras as opposed to 19 in the
4th-generation. These additional sensors form a new peripheral
vision system that bolsters safety by providing the AV with
higher quality data at higher frequencies [8,9].
State-of-the-art computation. The increasing amounts of
available data need to be processed by state-of-the-art
algorithms and models to ensure highly-accurate results.
However, more accurate algorithms and models often come at
the cost of increased parameter sizes and more floating point
operations (FLOPs) [10]–[12]. Notably, the increased scale
of modern deep neural networks (DNNs) forms the “primary
ingredient“ in achieving state-of-the-art accuracy [13]. Inno-
vative solutions to reduce the computational requirements
of DNNs [14,15] have usually resulted in reduced accuracy,
which hampers the AV’s safety in complex environments.

1 UC Berkeley 2 UT Austin

Timely results. To surpass the safety levels of human drivers,
an AV must respond more quickly than humans [16], whose
reaction times vary from 390 ms [17] to 1.2 s [18] depending
on factors such as road conditions, driver attentiveness, age,
etc. To achieve these reaction times and ensure safety in
challenging driving scenarios, the AV’s computational pipeline
must operate in “real-time” to meet latency goals when
executing state-of-the-art computation on high-fidelity data.

Thus, to drive safely, AVs must produce highly-accurate and
timely results using state-of-the-art algorithms and models that
consume high-fidelity sensor data. The combination of these
characteristics requires AVs to exploit the compute capabilities
of cutting-edge hardware. However, the deployment of such
hardware in an AV is constrained by its cooling, power, and
stability requirements [16]. For example, the DRIVE plat-
form [19], NVIDIA’s flagship hardware for AVs, is updated
every 3 years. Its most recent iteration, the DRIVE Orin [20],
was put into production vehicles in 2023 and its successor,
the DRIVE Atlan [21], is slated for release in 2026 [22].
Moreover, upgrading the hardware of previously-deployed
AVs is often infeasible due to the cost and complexity involved
with a recall [23]. As a result, modern AVs are forced to trade-
off accuracy, and hence, safety, for computational resources
and timely results, by either reducing the amount of data fused
from multiple sensors, or deploying algorithms and models
that require a lower number of parameters and FLOPs [2].

In light of this fundamental mismatch between the pace of
development of compute technologies with the update cycles
of vehicles [24], we propose to augment the computational
resources in an AV with the compute capabilities of the
cloud. Cloud computing platforms provide the illusion of
infinite computing resources [25], and enable low-cost access
to state-of-the-art hardware [26]–[28]. In contrast to the
3-year update cycle in AVs, the hardware and software
in the cloud is frequently updated [29,30]. For AVs, the
cloud enables the deployment of compute-intensive, rapidly-
evolving algorithms and models which can exploit state-of-the-
art hardware without requiring complex recalls for hardware
and software updates [31,32]. As a result, AVs can enhance
safety by executing highly-accurate algorithms and models
on powerful cloud resources to provide timely results.

Despite the potential benefits of the cloud, its practical
use in AVs has remained largely unexplored due to concerns
regarding the limited bandwidth of the network available
on AVs and the high, often unpredictable latency of cloud
systems. In this paper, we evaluate the efficacy of augmenting
the computational resources on-board AVs with the unreliable
resource pool of the cloud. Specifically, we seek to enhance
the accuracy of an AV’s decisions by harnessing the capabil-

Cameras (19x)

LiDARs (5x)

GPS (1x)

Sensors

Control
Motion
Prediction

Perception

Object Tracking

Lane
Detection

Object
Detection

Route
Planning

Trajectory
Planning

Planning

19 MB/s

10 MB/s

Localization

Fig. 1. A modular AV pipeline with multiple sensors feeding data to the
perception, prediction, planning and control modules.

ities of the cloud, while ensuring that the AV can always fall
back to its on-board computational capabilities in order to
strictly exceed its current safety standards. To this effect, the
paper makes the following key contributions:
(1) We identify three mechanisms that can be used by AVs
to leverage the cloud for safety enhancements (§III).
(2) We identify limitations in the ability of current execution
systems to achieve these safety-enhancement mechanisms
(§IV), and propose a system design based on speculative
execution of computation in the cloud that enables their
efficient execution and maximizes accuracy (§V).
(3) We evaluate the efficacy of our design under current
cloud and network capabilities using the three mechanisms
on complex scenarios from the NHTSA crash scenarios (§VI).

We argue that the network and compute trends are in
favor of the feasibility of our approach, and discuss specific
challenges that must be resolved by the community to enable
AVs to reap the complete safety benefits of the cloud (§VII).

II. BACKGROUND & MOTIVATION

The prevalent design of an AV’s computation is a modular
multi-stage pipeline (Fig. 1) [4,16,33]–[36] where the inputs
from the vast array of sensors (e.g., cameras, LiDARs, radars,
etc.) are processed by the perception and localization modules.
The perception module detects and tracks nearby objects
of interest, such as pedestrians, vehicles, traffic lights, etc.
By fusing the perception results with the location from the
localization module, the AV pipeline constructs an internal
representation of the environment. The prediction module
forecasts the behavior of non-static objects (i.e., pedestrians,
vehicles) which enables the planning module to compute a
safe and comfortable trajectory for the AV to follow. Finally,
the control module converts the trajectory plan into steering
and acceleration commands which are applied to the AV.

To compute safe control commands, AVs depend on high-
fidelity data from the sensors and timely results from its
algorithms and models (see §I). However, due to limitations
in the power of the hardware relative to the amount of sensor
data generated, AV developers must make decisions about
about which data to process using what algorithms and when

TABLE I
RUNTIME DISPARITY BETWEEN AV HARDWARE AND CLOUD HARDWARE

Model Runtime [ms] Speedup
Orin A100

DETR-ResNet-50 301.7 102.2 2.95×
DETR-ResNet-101 407.7 118.2 3.45×
DETR-ResNet-101-DC 859.2 146.6 5.86×
DINO-SWIN-Tiny 722.1 90.1 8.01×
DINO-SWIN-Small 903.5 107.1 8.43×
DINO-SWIN-Large 1529.9 180.8 8.46×

to return results to ensure the safety of the vehicle. For
example, Baidu’s Apollo AV [36] only utilizes specialized
cameras for detecting traffic lights when the AV is notified
of the presence of a nearby traffic light via a pre-computed
map of the city [37]. While this strategy makes efficient
use of the hardware resources on-board, the strategy fails
to detect temporary traffic signals installed by construction
or emergency vehicles, which may lead to unsafe driving
scenarios. Augmenting AV compute resources with the cloud
will enable more comprehensive data processing which avoids
discarding data due to resource limitations, thus improving
safety without impacting the critical-path computation.

After deciding which data to process, AVs must decide
what algorithms and models to execute. As discussed in §I,
AVs must often compromise the accuracy of its algorithms
and models due to resource constraints stemming from the
hardware available on-board. Even after accounting for the
slow upgrade cycle which often puts the hardware in AVs
several revisions behind the state-of-the-art in the cloud, the
hardware available in the cloud is much more powerful than
the hardware available in AVs, even if the architecture and the
revision are the same. For example, the NVIDIA DRIVE Orin
platform [20], which is slated to be available in production
vehicles in 2023 and is the latest revision supported by Baidu’s
Apollo AV [38], uses NVIDIA’s Ampere microarchitecture
to deliver a performance of 5.2 FP32 TFLOPs [39]. The
equivalent Ampere cloud GPU is the NVIDIA A100, which
was released in 2020 and delivers a performance of 19.5 FP32
TFLOPs [40], a 3.75× increase over the DRIVE Orin. Table I
measures the effects of this disparity by executing open-source
implementations of DETR [41,42] and SWIN [10,43], two
state-of-the-art vision transformers which have been adapted
for object detection, atop both the NVIDIA Orin and the
A100. We observe a significant speedup of up to 8.4× by
executing the same model on the same input on a cloud
GPU. Similar trends have been shown by prior work for
other safety-critical algorithms applicable to AVs, such as
motion planning [44].

Finally, an AV must decide by when to compute the
control commands at the end of the pipeline, thus man-
dating a deadline on the computation being executed. For
example, to surpass human driving in safety, the pipeline
must execute faster than human reaction times. In addition,
prior works [2,45,46] indicate this deadline varies widely
according to the environment around the AV. Intuitively,
driving slowly on a crowded urban street may tolerate a lax

Local Execution

f()

Speedup!
Downloadf'()

Cloud Execution

Upload

Fig. 2. An arbitrage opportunity afforded by exploiting state-of-the-art
hardware to execute higher-accuracy models at a lower latency.

deadline for the computation to finish, whereas swerving to
prevent an accident on the freeway requires the AV to respond
quickly [47,48]. This variability in the required response time
of the computation further complicates the deployment of
more accurate, but slower algorithms and models since they
cannot meet tighter deadlines [2].

III. ENHANCING SAFETY USING THE CLOUD

Conventional wisdom suggests that the latency and avail-
ability of cellular network connections makes using the
cloud on the critical-path of the computation infeasible [49].
However, Table I presents an arbitrage opportunity whereby
an AV could potentially return more accurate results faster
by exploiting the computational power of the hardware in the
cloud (see Fig. 2). We argue that AVs should instead take a
best-effort speculative approach to leverage the cloud when
it is available and utilize reliable fallback mechanisms that
use on-board computation when the cloud is not immediately
accessible. We discuss three such mechanisms that enable a
best-effort augmentation of an AV’s safety below:
Higher-accuracy models. AVs can selectively offload data
from their input sensors to the cloud, allowing higher accuracy
models to be executed in the cloud. For example, in Table I,
an AV can choose to execute DETR-ResNet-101-DC in the
cloud on its camera data, which provides a ∼3-point increase
in average precision over DETR-ResNet-50 [41] and executes
faster. Thus, while an AV with an end-to-end deadline of 500
ms can only execute DETR-ResNet-50 on its local hardware,
it can optimistically exploit the accuracy of all models in
Table I when the latency to the cloud is low.
Accurate environment representation. While the earlier
mechanism significantly enhances an AV’s ability to process
sensor data and understand its surroundings, this mechanism
does not apply to obstacles obscured by the AV’s blind
spots. To improve safety in these scenarios, AVs can share
their locations computed by the localization module to the
cloud and subsequently retrieve the locations of other nearby
vehicles. Integrating the locations of nearby vehicles via the
cloud allows the planning module to generate safer trajectories
which avoid collisions with vehicles located in blind spots.
Contingency planning. During the course of computation,
AVs must make probabilistic decisions which affect the
outputs of the modules. For example, object detectors
are configured with a confidence threshold to filter out
misdetections from the model’s outputs [42]. Similarly, the
prediction module generates several possible trajectories for
nearby obstacles, and ranks them based on their probability
of occurring [50,51]. The planning module then uses the most

likely trajectory of the obstacles to plan a trajectory for an AV
to follow. However, AVs can offload the computation of plans
that handle unlikely object trajectories to the cloud. When
an object takes an unlikely trajectory, AVs can access the
corresponding cloud-computed plan, enabling quick reactions
to any sudden changes in the environment.

§VI evaluates the efficacy of these mechanisms to ensure
the safety of an AV under real-world complex scenarios.

IV. RELATED WORK

Our principle design objective, as per §III, is to use the
cloud as a best-effort pool of resources in order to improve the
accuracy of AV decision-making while retaining the ability
to fall back to locally-computed results to handle delays and
variability. We now discuss the feasibility of implementing
such an approach using existing execution systems.

The Robot Operating System (ROS) [52] is the current
execution system-of-choice for AVs and has been deployed by
vendors including Autoware [35], Cruise [53], BMW [54], and
others [55,56]. ROS’ highly-modular design enables various
initiatives to provide additional feature enhancements, such
as real-time support [57]). One such initiative which aims
to add cloud support to ROS is FogROS [44,58]. FogROS
allows users to designate ROS nodes that must execute in the
cloud and specify their resource requirements. FogROS then
provisions suitable cloud instances, configures the network
connection between the cloud and the local machine, and
registers the cloud nodes with the local coordinator, enabling
seamless communication between the cloud and local nodes.

While FogROS greatly simplifies the deployment of specific
ROS nodes to the cloud, it lacks out-of-the-box support for
fall-back mechanisms that switch to local computation when
the connection to the cloud becomes too unreliable. Moreover,
implementing such an approach atop ROS’ callback-execution
model is a complex, tedious, and error-prone process because
developers must implement and manage varying deadlines
(see §II) using fine-grained wall-clock timers on every
node [59]. Because these fine-grained timers may cause prior-
ity inversions when they rapidly produce events which overfill
a SingleThreadedExecutor’s queue, developers must im-
plement ROS nodes using MultiThreadedExecutors which
requires manually managing shared state using locks in order
to ensure the safe and correct fusion of results from the cloud
and from local computation. This complexity further increases
if nodes attempt to maximize the accuracy of computation
under a deadline by concurrently executing a mixture of
algorithm and model implementations.

In addition to ROS, several related works have proposed
designs that allow AVs to utilize the cloud, however, these
approaches focus on specific tasks such as merging sensor data
and intermediate representations across a fleet of vehicles [60]–
[64]. For example, both Carcel [60] and EMP [64] enable
a fleet of vehicles to create an accurate representation of
their environment by selectively sharing their data to an
edge server while remaining resilient to network fluctuations.
Other work (e.g., Neurosurgeon [65]) has examined how to
split computation between the cloud and the AV [66]–[68].

However, none of these works propose a general system
design for AVs that falls back to results computed by on-
board hardware in order to handle faults in the cloud or
the network. Therefore, we believe that these works are
complementary, and that AVs can integrate their methods with
our design in order to gain further accuracy improvements
while maintaining a reliable baseline accuracy through the
ability to fall back to results from local computation.

V. DESIGN

Given the limitations of the current systems, we seek to
design an execution system that enables AV developers to
easily achieve our design goal of augmenting the computa-
tion’s accuracy with the vast pool of resources in the cloud.
To ensure that the programming model remains familiar to
the current AV systems (e.g., ROS), our system models an
AV pipeline as a directed graph in which vertices, referred
to as operators are akin to ROS nodes, and are connected to
other vertices via streams. The streams are statically-typed
and enforce an interface between the sender (akin to a ROS
publisher) and a receiver (akin to a ROS sender).

However, to safely exploit the cloud resources in the
presence of network delays and unavailability of cloud
resources, our system allows operators to define deadlines that
bound the time which can elapse between the transmission of
a particular request to the cloud and the retrieval of its result.
To do so, the system must enable each operator to: (i) specify
the computation that executes locally and the computation
that can execute in the cloud, (ii) control what input data
is transmitted to the cloud and what deadline is assigned to
its completion, and (iii) fuse the inputs from the cloud and
the on-board hardware to ensure that the maximum accuracy
results available by the deadline are used. We emphasize
that our system design does not automatically decide which
models and algorithms are suitable for cloud execution, but
rather provides the abstractions and mechanisms to enable
augmenting local computation with the cloud in order to
benefit overall accuracy. Fig. 3 provides an overview of our
approach, and we now elaborate on how our system achieves
each of the aforementioned aspects below:
1 Operator configuration. Each operator must implement

a setup method in which the operator informs the system if
its computation is to be assisted by a cloud implementation.
To do so, the operator initiates a connection to the cloud for
dispatching remote procedure calls (RPCs) and invokes the
use cloud method in our system with the following API:
use_cloud(handle, type, msg_handler, priority)

The operator registers the handle to the RPC connection
with the system along with the type of the message to be
relayed. Moreover, the system allows an operator to invoke
use cloud multiple times in order to take advantage of mul-
tiple cloud implementations which may span different cloud
providers and exploit vendor-specific hardware to provide
the highest-accuracy results within the given deadline [69].
By setting the priority, the system ensures a total order
over the results of the invocations in order to select which
of the potential results to output. For example, an object

Cloud-
assisted or
Local only?

Local Execution

Select Cloud
Models and
Deadlines

f()

f()
Cloud Execution

Upload

Cache Results

Download
Deadline-aware
Selection and
Dispatch of Results

2
1

3

Fig. 3. Our speculative cloud execution design allows each operator to
make fine-grained decisions about when to contact the cloud and how much
time to allocate for a response. The results from the cloud are automatically
incorporated to ensure the highest-possible accuracy.

detection operator may invoke several models from Table I
in the cloud with the hope that one of them returns a result
by the given deadline, and may set their priorities according
to each detector’s accuracy on a static dataset in order to
favor results from more accurate detectors. Invoking this API
informs the underlying execution system that it needs to set
up the mechanisms detailed below, which ensure the correct
collation of results from the cloud and the local execution.
2 Deadline enforcement. While the execution of non-

cloud enabled operators continues as normal, cloud-enabled
operators must be able to specify a deadline on the time
that they are able to wait for a higher-accuracy result
from one of the cloud implementations registered with
use cloud. To do so, each invocation of use cloud requires
a msg handler function that conforms to the following API:
(input_message, timestamp) ->

Optional[output_message, deadline]

For each message that the operator receives, the system
invokes the registered msg handlers which may use the
message content and the timestamp to decide whether to
send the message to the handler’s cloud implementation
and what deadline to assign to this request. Unlike ROS
timestamps that correspond to physical time, this timestamp
is an internal logical representation of time that corresponds
to a counter of the messages received by the operator. In
addition to deciding whether to offload the computation of
the messages to the cloud based on its contents [46,70], the
handler functions can use the logical timestamps to enforce
simple policies such as sending non-consecutive inputs to
the cloud to reduce bandwidth usage, or alternating between
different implementations to avoid bottlenecks in the cloud
service and ensure fault-tolerance for the operator.

The operator makes the system aware of its intent to
transmit a message to the cloud service by returning an
output message from the handler. The output message
must match the message definition in the RPC handle
registered with use cloud, but can be different from the
type of the input message. This type differentiation allows
the operators to bundle extra state to the cloud platform that is
not communicated to other operators. For example, the object
tracking operator in the perception module assigns unique
identifiers to detected obstacles based on their past history.
As a result, selectively executing inputs to this operator in
the cloud also requires transmitting the state of the identifiers
generated by the local object tracker to allow the cloud-based
object tracker to correctly assign identifiers.

In addition to the message to be conveyed to the cloud
service, the handler decides the relative deadline d to be
assigned to the arrival of its result. The ability to return a new
deadline d for each incoming message enables the system to
adjust to varying deadlines required by the AV to respond to
dynamicity in the environment [2,45,46]. Given the deadline
and the message, the system decides if the request should be
sent based on the length of its outgoing queues, which fill
up when network’s quality of service degrades. If the system
elects to send the request, the system indexes the request
by its timestamp and priority and installs a timer that
triggers d milliseconds from the current time.
3 High-accuracy results. In parallel to executing the request

in the cloud, the system invokes the callbacks registered
for the incoming message and executes them on the local
hardware with the lowest priority p. Upon completion,
the local callbacks invoke send with the output message
to convey the results to downstream operators. However,
the system intercepts the invocation of the send to check
for pending cloud requests with the same timestamp and a
higher priority p′ > p. If a pending cloud request is found, the
system caches the local result and waits for the request’s timer
to interrupt as detailed below. However, if no pending cloud
request is found and the system already forwarded a message
from a cloud execution to the downstream operators (i.e., the
result from the cloud arrives before the local computation
finishes), the local result is dropped. Otherwise, the message
containing the local result is sent to the downstream operators.

Upon arrival of a message from the cloud with priority
p and timestamp t, the system checks if the message missed
its deadline by querying the status of the timer installed for
(t, p). If the timer was triggered, the message missed its
deadline and is dropped. Similarly, if the system already
sent a message for t (i.e., a higher priority request returned
more quickly or another request’s timer triggered earlier),
the message is dropped and the installed timer is deactivated.
Otherwise, if no higher priority cloud request is pending
and the system has not sent a message for t, the message
is sent to the downstream operators and the installed timer
is deactivated. However, if there is a pending cloud request
with a higher priority, the current results are cached.

Finally, if an active timer triggers, the system receives an
interrupt in which it checks its cache for the highest priority
message presently available for the timestamp and forwards
the message to the downstream operators.

VI. EVALUATION

We now evaluate the efficacy of our approach in augment-
ing the safety of cloud-assisted AVs under complex, real-world
scenarios while maintaining the accuracy of an AV using only
on-board computation. We evaluate our design to demonstrate
that our approach to augmenting AVs Specifically, we seek
to answer the following questions:

1) Do current technologies support a low-latency and
reliable connection to the cloud? (§VI-A)

2) Does our system enable the three techniques (§III) to
exploit cloud resources to enhance AV safety? (§VI-B)

5 km

0

200

400

600

800

1000+

L
at

en
cy

[m
s]

Fig. 4. Cellular network latency of a 5G connection while driving through
a route in San Francisco frequented by Waymo and Cruise AVs.

A. Feasibility of Cloud Access

We investigate whether modern cellular networks are able
to provide the speed and bandwidth necessary to execute data-
intensive AV operators. To measure network performance in
realistic setting, we conduct a field test by following a route
in San Francisco where Cruise and Waymo already provide
fully autonomous rides [71,72]. The route contains both urban
and highway driving and is visualized in Fig. 4. We discuss
our experiment setup and the findings below.
Experiment Setup. We model the transmission of HD camera
footage from an AV to the cloud. In our vehicle, we connect
a Lenovo ThinkPad P1 Gen 2 laptop to an Inseego MiFi X
PRO 5G hotspot on the Verizon network via USB-C. On a
Google Pixel 5, we collect timestamped GPS coordinates at
1 Hz. The laptop executes a multithreaded gRPC [73] client
which sends 33.3 KB messages at 30 Hz to a server to match
the bitrate of 30 FPS HD camera footage [74]. We establish
a connection to a Google Cloud Platform n1-highmem-8
instance in the us-west2-a zone which executes a gRPC
server that responds to messages from the client with 1 KB
acknowledgments. The client measures the round-trip latency
of sending a message to receiving an reply. Because network
delays may cause the client to queue messages and overstate
the network latency, the client waits for all messages to
process if it detects more than 30 queued messages.
Findings. The 5G network in San Francisco frequently
provides latencies that enable cloud execution. We measure
a median round-trip-latency of 68 ms (Fig. 4) which demon-
strates an opportunity to take advantage of the hundreds
of milliseconds in runtime disparity between cloud and AV
hardware (Table I). In addition, the long tail of network
latencies from 336 ms at the 90th percentile to 3027 ms at
the 99th percentile substantiates the need to manage network
delays. In §VI-B, we demonstrate that our design takes
advantage of the fast common-case latencies to enable critical
safety benefits while mitigating the impact of long tail-end
latencies by falling back to results from local computation.

B. Study of Scenarios

We study of the safety benefits of our design (§V) and
how it enables the three mechanisms which use the cloud
to improve AV safety (§III). For each mechanism, we
demonstrate its efficacy under a complex, real-world scenario

12 m
(Reaction)

42 m
(Braking)

24 m/s

10 m
(Reaction)

42 m
(Braking)

24 m/s

Fig. 5. Traffic Jam Scenario leverages the cloud’s ability to run higher-
accuracy models at a reduced latency to reduce the AV’s response time, thus
minimizing its reaction time and avoiding a collision with the motorcycle.

18 m/s

1
0

 m
/s

18 m/s

1
0

 m
/s

Fig. 6. Running a Red Light Scenario leverages the cloud’s ability to
build accurate environment representations to detect the occluded vehicle
running the red light in time to avoid a collision.

executed using the CARLA simulator [75]. We use the
pseudo-asynchronous mode of execution from the Pylot AV
platform [4] to simulate the delay of calculating a demand
for different end-to-end deadlines, retrieved from different
end-to-end deadlines, retrieved from Fig. 41.
Traffic Jam. This scenario from [2] simulates merging into
a traffic jam, visualized in Fig. 5. The AV drives at a high
speed on a two lane undivided road and must come to a halt
behind the motorcycle stopped in the distance. The motorcycle
complicates this scenario because the AV must perceive the
stopped obstacle from afar to prevent a collision. Moreover,
the AV cannot swerve to avoid a collision due the vehicles in
the opposite lane. Since this scenario requires both far-away
detections and rapid responses due to the high driving speed,
the technique of exploiting the cloud to run higher-accuracy
models quickly ensures maximum safety.

To evaluate safety, we use a simple planner that brakes
once the AV’s object detection operator identifies the obstacle
on three consecutive camera frames. We then investigate the
following three operator configurations (Table II):
(1) Local which executes DETR-ResNet-50 on a local
NVIDIA Orin GPU. We choose DETR-ResNet-50 since it
is the only model that provides response times required to
ensure human-level safety on the local GPU (Table I and §I).
(2) Cloud which executes DETR-ResNet-101 on an NVIDIA
A100 GPU running on a Google Cloud a2-highgpu-1g
instance. We choose DETR-ResNet-101 to ensure that the
local and cloud models belong to the same architecture.
(3) Ours which enables operators to specify deadlines on
response time from the cloud and fall back to local results
when the cloud is unable to meet the deadline.

1Videos of scenarios are available at https://tinyurl.com/26fzrabu

TABLE II
CONFIGURATIONS THAT AVOID A COLLISION ARE MARKED IN GREEN,

WHILE CONFIGURATIONS THAT COLLIDE ARE MARKED IN RED.

Speed Approach Cloud Response Time [s]
[m/s] 0.5 0.75 1.0 1.25 1.5 3.0

11
Local
Cloud
Ours

18
Local
Cloud
Ours

20
Local
Cloud
Ours

22
Local
Cloud
Ours

24
Local
Cloud
Ours

We sweep the entire range of driving speeds in California
(i.e., 25 mph to 65 mph), and simulate cloud response times
up to the p99 latency collected from our drive through San
Francisco (§VI-A). We note that the higher cloud response
times do not apply to the Local approach. We find that at
higher speeds (e.g., 22 m/s), the lower-latency access to
higher-accuracy models afforded by the cloud is critical in
ensuring the safety of the AV. However, without appropriate
mechanisms to fall back to local computation using deadlines
as proposed in our design, the Cloud approach incurs more
safety violations than the Local approach when network
latency is high (e.g., a 3 second cloud response time when
the AV drives at 18 m/s).

Fig. 5 investigates how executing a higher-accuracy object
detector locally affects collision-avoidance in high-speed
scenarios. We compare a Local execution of DETR-ResNet-
101 to a Cloud execution with median network latency. We
find that the local execution fails to break in time due to its
222 ms longer response time, resulting in a collision.
Running a Red Light. This scenario from the NHTSA pre-
crash typology [76,77] simulates a vehicle running a red
light which forces the AV to perform a collision avoidance
maneuver. The AVs can only perceive the other vehicle just
before a potential collision, challenging its ability to respond
in time. We evaluate three variations of this scenario with
different intersections, and find that neither local nor cloud
executions of object detectors are able to avoid a collision.

However, using the cloud’s ability to build an accurate
environment representation (e.g., by sharing location data
with nearby AVs), allows the AV to plan its trajectory with
other vehicles in its blind spots. This enables the AV to brake
early and avoid a collision in this scenario.
Person Jaywalking. This scenario simulates a person un-
expectedly entering the street, requiring the AV to quickly
respond in order to avoid a collision. Fig. 7 evaluates the
scenario in which an AV executes its planning module locally,
which has a 500 ms end-to-end response time. Because the
pedestrian enters the street when the AV is only 10 m away,
the AV cannot generate an emergency swerving maneuver or
stop in time, resulting in a collision with the pedestrian.

24 m/s

5.6 m
(Reaction)

20% 10% 70%

24 m/s

4.4 m
(Reaction)

20% 10% 70%

Fig. 7. Person Jaywalking Scenario leverages the cloud’s ability to do
contingency planning for the unlikely case that the pedestrian enters the
street, allowing the AV to use the cached plan quickly and avoid a collision.

However, we perform contingency planning using the cloud
which generates a plan for the low-likelihood case that the
pedestrian enters the street, downloads the plan to the AV, and
caches the plan in the AV’s planner. When the cloud-assisted
AV detects the pedestrian entering the street, the AV enacts
the cached contingency plan and bypasses the local planner,
lowering the response time to 400 ms. We observe that the
cloud-computed contingency plan enables the AV to swerve
in time and successfully avoid a collision.

VII. DISCUSSION & CONCLUSION

Our experiments show that AVs can leverage the cloud
with current technology to exploit safety benefits. We present
a design which ensures that cloud execution strictly improves
safety by executing models and algorithms speculatively in the
cloud. When the cloud fails to produce results by a deadline,
our design falls back to results from local execution which
are computed concurrently. Although our design focuses on
the enforcement of provided deadlines, the calculation of
deadlines for cloud execution presents an exciting opportunity
for further exploration.

Moreover, trends in technology demonstrate that AVs
of the future will harness the benefits of the cloud. AVs
increasingly rely on higher-fidelity data collected from more
sensors which they process using larger and more compute-
intensive algorithms and models. Meanwhile, cloud and
network technologies continue to improve, and will present
more arbitrage opportunities in which the cloud can benefit
safety. We hope that this research will bring attention to the
potential advantages of augmenting AVs with the cloud and
inspire further exploration and development in this area.

REFERENCES

[1] National Highway Traffic Safety Administration, “Traffic Safety
Facts (2020 Data),” https://crashstats.nhtsa.dot.gov/Api/Public/
ViewPublication/813375.

[2] I. Gog, S. Kalra, P. Schafhalter, J. E. Gonzalez, and I. Stoica, “D3: A
Dynamic Deadline-Driven approach for Building Autonomous Vehicles,”
in Proceedings of the Seventeenth European Conference on Computer
Systems, 2022, pp. 453–471.

[3] J. Wang, L. Zhang, Y. Huang, J. Zhao, and F. Bella, “Safety of
autonomous vehicles,” Journal of advanced transportation, vol. 2020,
pp. 1–13, 2020.

[4] I. Gog, S. Kalra, P. Schafhalter, M. A. Wright, J. E. Gonzalez, and
I. Stoica, “Pylot: A Modular Platform for Exploring Latency-Accuracy
Tradeoffs in Autonomous Vehicles,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 8806–8813.

[5] S. Wang, Z. Sheng, J. Xu, T. Chen, J. Zhu, S. Zhang, Y. Yao, and
X. Ma, “ADEPT: A testing platform for simulated autonomous driving,”
in 37th IEEE/ACM International Conference on Automated Software
Engineering, 2022, pp. 1–4.

[6] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh,
M. Vazquez-Chanlatte, and S. A. Seshia, “VerifAI: A toolkit for the
formal design and analysis of artificial intelligence-based systems,” in
Computer Aided Verification: 31st International Conference, CAV 2019,
New York City, NY, USA, July 15-18, 2019, Proceedings, Part I 31.
Springer, 2019, pp. 432–442.

[7] “Tesla FSD Hardware 4.0 Revealed: More Cameras, New Placements,”
https://tinyurl.com/yc2as3f6.

[8] “Waymo one autonomous robotaxi first ride: Way mo’ better than
driving?” https://tinyurl.com/yvku75kx.

[9] “Introducing the 5th Generation Waymo Driver,” https://blog.waymo.
com/2020/03/introducing-5th-generation-waymo-driver.html.

[10] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 10 012–10 022.

[11] Y. Li, H. Mao, R. Girshick, and K. He, “Exploring plain vision
transformer backbones for object detection,” in Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part IX. Springer, 2022, pp. 280–296.

[12] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 11 976–11 986.

[13] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, “Scaling vision trans-
formers,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 12 104–12 113.

[14] M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,”
in International conference on machine learning. PMLR, 2021, pp.
10 096–10 106.

[15] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and Efficient
Object Detection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[16] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The Architectural Implications of Autonomous Driving:
Constraints and Acceleration,” in Proceedings of the 23rd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2018, pp. 751–766. [Online]. Available:
http://doi.acm.org/10.1145/3173162.3173191

[17] B. Wolfe, B. Seppelt, B. Mehler, B. Reimer, and R. Rosenholtz,
“Rapid holistic perception and evasion of road hazards.” Journal of
experimental psychology: general, vol. 149, no. 3, p. 490, 2020.

[18] G. Johansson and K. Rumar, “Drivers’ brake reaction times,” Human
factors, vol. 13, no. 1, pp. 23–27, 1971.

[19] “NVIDIA DRIVE: Hardware for Self-Driving Cars,” https://www.nvidia.
com/en-us/self-driving-cars/drive-platform/hardware/.

[20] “NVIDIA Introduces DRIVE AGX Orin,” https://tinyurl.com/6pjsxzw7.
[21] T. Tomazin, “A Data Center on Wheels: NVIDIA Unveils DRIVE

Atlan Autonomous Vehicle Platform,” https://blogs.nvidia.com/blog/
2021/04/12/nvidia-drive-atlan-autonomous-vehicle-platform/.

[22] “NVIDIA Enters Production With DRIVE Orin, Unveils Next-Gen
DRIVE Hyperion AV platform,” https://tinyurl.com/2s38djwr.

[23] “Tesla Talks FSD Hardware 4.0, but There Will Not Be
Retrofits,” https://www.notateslaapp.com/news/1172/tesla-talks-fsd-
hardware-4-0-but-there-will-not-be-retrofits.

[24] “As Automakers Add Technology to Cars, Software Bugs Follow,” https:
//www.nytimes.com/2022/02/08/business/car-software-lawsuits.html.

[25] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica et al., “Above the clouds: A berkeley
view of cloud computing,” Dept. Electrical Eng. and Comput. Sciences,
University of California, Berkeley, Rep. UCB/EECS, vol. 28, 2009.

[26] “NVIDIA GPU Cloud Computing,” https://www.nvidia.com/en-us/data-
center/gpu-cloud-computing/.

[27] “Google Cloud TPU,” https://cloud.google.com/tpu.
[28] “AWS Inferentia,” https://aws.amazon.com/machine-learning/

inferentia/.
[29] “AWS EC2 instance timeline,” https://instancetyp.es.
[30] “Building Warehouse-Scale Computers at Google Cloud,” https://www.

youtube.com/watch?v=9i7HuU8d3 4.

[31] “Tesla recalls 362,000 U.S. vehicles over Full Self-Driving software,”
https://www.reuters.com/business/autos-transportation/tesla-recalls-
362000-us-vehicles-over-full-self-driving-software-2023-02-16/.

[32] “Toyota recalls 1.9 million cars for software glitch,”
https://www.cnbc.com/2014/02/12/toyota-recalls-19-million-cars-for-
software-glitch.html.

[33] General Motors, “2018 Self-driving safety report,” https://www.gm.
com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf.

[34] “NTSB’s Accident Report on the Uber Self-Driving Vehicle Crash,”
https://tinyurl.com/y334xnez.

[35] Autoware, “Autoware User’s Manual - Document Version 1.1,” https:
//tinyurl.com/2v2jkk9n.

[36] “Architectural overview of Baidu’s ApolloAuto,” https://github.com/
ApolloAuto/apollo#architecture.

[37] “Apollo’s Traffic Light Perception,” https://github.com/ApolloAuto/
apollo/blob/master/docs/06 Perception/traffic light.md.

[38] “Hardware prerequisites of Baidu’s ApolloAuto,” https://github.com/
ApolloAuto/apollo#prerequisites.

[39] “NVIDIA Drive AGX Orin Developer Kit,” https://tinyurl.com/u2rxefpt.
[40] “NVIDIA A100 Specifications,” https://www.nvidia.com/en-us/data-

center/a100/.
[41] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and

S. Zagoruyko, “End-to-end object detection with transformers,” in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part I 16. Springer, 2020.

[42] “DETR - Hugging Face,” https://huggingface.co/docs/transformers/
model doc/detr.

[43] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. Ni, and H. Shum,
“Dino: Detr with improved denoising anchor boxes for end-to-end object
detection,” in International Conference on Learning Representations,
2022.

[44] K. E. Chen, Y. Liang, N. Jha, J. Ichnowski, M. Danielczuk, J. Gonzalez,
J. Kubiatowicz, and K. Goldberg, “Fogros: An adaptive framework for
automating fog robotics deployment,” in 2021 IEEE 17th International
Conference on Automation Science and Engineering (CASE). IEEE,
2021, pp. 2035–2042.

[45] M. Li, Y. Wang, and D. Ramanan, “Towards Streaming Perception,” in
Proceedings of the European Conference on Computer Vision (ECCV),
Aug. 2020.

[46] G.-E. Sela, I. Gog, J. Wong, K. K. Agrawal, X. Mo, S. Kalra,
P. Schafhalter, E. Leong, X. Wang, B. Balaji, J. E. Gonzalez, and
I. Stoica, “Context-aware streaming perception in dynamic environ-
ments,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2022.

[47] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A Review
of Motion Planning for Highway Autonomous Driving,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 21, no. 5, pp. 1826–
1848, 2019.

[48] M. Alcon, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J.
Cazorla, “Timing of Autonomous Driving Software: Problem Analysis
and Prospects for Future Solutions,” in Proceedings of the 26th IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2020, pp. 267–280.

[49] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on automation
science and engineering, vol. 12, no. 2, pp. 398–409, 2015.

[50] N. Rhinehart, K. M. Kitani, and P. Vernaza, “R2P2: A Reparameterized
Pushforward Policy for Diverse, Precise Generative Path Forecasting,”
in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 772–788.

[51] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine, “PRECOG:
Prediction Conditioned on Goals in Visual Multi-Agent Settings,” in
Proceedings of the IEEE International Conference on Computer Vision
(CVPR), 2019, pp. 2821–2830.

[52] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: An Open-Source Robot Operating
System,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA); Workshop on Open Source Robotics,
vol. 3, May 2009, p. 5.

[53] N. Valigi, “Lessons Learned Building a Self-Driving
Car on ROS,” https://roscon.ros.org/2018/presentations/
ROSCon2018 LessonsLearnedSelfDriving.pdf, 2018.

[54] M. Aeberhard, T. Kühbeck, B. Seidl, M. Friedl, J. Thomas,
and O. Scheickl, “Automated Driving with ROS at BMW,”

http://www.ros.org/news/2016/05/michael-aeberhard-bmw-automated-
driving-with-ros-at-bmw.html.

[55] A. Fregin, M. Roth, M. Braun, S. Krebs, and F. Flohr,
“Building a Computer Vision Research Vehicle with ROS,”
http://www.ros.org/news/2018/07/roscon-2017-building-a-computer-
vision-research-vehicle-with-ros----andreas-fregin.html.

[56] Udacity, “An Open Source Self-Driving Car,” https://www.udacity.com/
self-driving-car.

[57] C. Ho, S. Nirmal, J. P. Samper, S. Nikulin, A. Pemmaiah,
D. Pangercic, and J. Becker, “ROS2 on Autonomous
Vehicles,” https://roscon.ros.org/2018/presentations/ROSCon2018
ROS2onAutonomousDrivingVehicles.pdf.

[58] J. Ichnowski, K. Chen, K. Dharmarajan, S. Adebola, M. Danielczuk,
V. Mayoral-Vilches, H. Zhan, D. Xu, R. Ghassemi, J. Kubiatowicz
et al., “Fogros 2: An adaptive and extensible platform for cloud and
fog robotics using ros 2,” arXiv preprint arXiv:2205.09778, 2022.

[59] “ROS2 WallTimer,” http://docs.ros.org/en/indigo/api/roscpp/html/
classros 1 1WallTimer.html.

[60] S. Kumar, S. Gollakota, and D. Katabi, “A cloud-assisted design for
autonomous driving,” in Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, 2012, pp. 41–46.

[61] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan, “Avr:
Augmented vehicular reality,” in Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services,
2018, pp. 81–95.

[62] Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu, “F-cooper:
Feature based cooperative perception for autonomous vehicle edge
computing system using 3d point clouds,” in Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, 2019, pp. 88–100.

[63] S. P. Chinchali, E. Cidon, E. Pergament, T. Chu, and S. Katti, “Neural
networks meet physical networks: Distributed inference between edge
devices and the cloud,” in Proceedings of the 17th ACM Workshop on
Hot Topics in Networks, 2018, pp. 50–56.

[64] X. Zhang, A. Zhang, J. Sun, X. Zhu, Y. E. Guo, F. Qian, and Z. M.
Mao, “Emp: Edge-assisted multi-vehicle perception,” in Proceedings
of the 27th Annual International Conference on Mobile Computing
and Networking, 2021, pp. 545–558.

[65] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Computer Architecture News,
vol. 45, no. 1, pp. 615–629, 2017.

[66] M. Cui, S. Zhong, B. Li, X. Chen, and K. Huang, “Offloading
autonomous driving services via edge computing,” IEEE Internet of
Things Journal, vol. 7, no. 10, pp. 10 535–10 547, 2020.

[67] Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-based
task offloading for vehicular cloud computing systems,” in 2018 IEEE
International Conference on Communications (ICC). IEEE, 2018.

[68] F. Sun, F. Hou, N. Cheng, M. Wang, H. Zhou, L. Gui, and X. Shen,
“Cooperative task scheduling for computation offloading in vehicular
cloud,” IEEE Transactions on Vehicular Technology, vol. 67, no. 11,
pp. 11 049–11 061, 2018.

[69] I. Stoica and S. Shenker, “From cloud computing to sky computing,”
in Proceedings of the Workshop on Hot Topics in Operating Systems,
2021, pp. 26–32.

[70] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable Adaptation of Video Analytics,” in Proceedings
of the ACM Special Interest Group on Data Communication
Conference (SIGCOMM), 2018, pp. 253–266. [Online]. Available:
http://doi.acm.org/10.1145/3230543.3230574

[71] “Welcome, riders,” https://getcruise.com/news/blog/2022/welcome-
riders/, Aug. 2021.

[72] “Welcoming our first riders in san francisco,” https://blog.waymo.com/
2021/08/welcoming-our-first-riders-in-san.html, Feb. 2022.

[73] “grpc,” https://grpc.io/.
[74] “Youtube recommended upload encoding settings,” https://support.

google.com/youtube/answer/1722171.
[75] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,

“CARLA: An Open Urban Driving Simulator,” in Proceedings of the
1st Conference on Robot Learning (CoRL), 2017, pp. 1–16.

[76] “NHTSA-inspired Pre-crash Scenarios,” https://carlachallenge.org/
challenge/nhtsa/.

[77] “Pre-Crash Scenario Typology for Crash Avoidance Research,” https:
//www.nhtsa.gov/sites/nhtsa.gov/files/pre-crash scenario typology-
final pdf version 5-2-07.pdf.

