
Stela: Enabling Stream Processing Systems to
Scale-in and Scale-out On-demand

Le Xu∗, Boyang Peng†, Indranil Gupta∗
∗Department of Computer Science, University of Illinois, Urbana Champaign,

{lexu1, indy}@illinois.edu
†Yahoo! Inc., jerrypeng@yahoo-inc.com

Abstract—The era of big data has led to the emergence of
new real-time distributed stream processing engines like Apache
Storm. We present Stela (STream processing ELAsticity), a
stream processing system that supports scale-out and scale-in
operations in an on-demand manner, i.e., when the user requests
such a scaling operation. Stela meets two goals: 1) it optimizes
post-scaling throughput, and 2) it minimizes interruption to the
ongoing computation while the scaling operation is being carried
out. We have integrated Stela into Apache Storm. We present
experimental results using micro-benchmark Storm applications,
as well as production applications from industry (Yahoo! Inc. and
IBM). Our experiments show that compared to Apache Storm’s
default scheduler, Stela’s scale-out operation achieves throughput
that is 21-120% higher, and interruption time that is significantly
smaller. Stela’s scale-in operation chooses the right set of servers
to remove and achieves 2X-5X higher throughput than Storm’s
default strategy.

I. INTRODUCTION

As our society enters an age dominated by digital data, we

have seen unprecedented levels of data in terms of volume,

velocity, and variety. Processing huge volumes of high-velocity

data in a timely fashion has become a major demand. Accord-

ing to a recent article by BBC News [25], in the year 2012,

2.5 Exabytes of data was generated everyday, and 75% of this

data is unstructured. The volume of data is projected to grow

rapidly over the next few years with the continued penetration

of new devices such as smartphones, tablets, virtual reality

sets, wearable devices, etc.
In the past decade, distributed batch computation systems

like Hadoop [1] and others [2][3][4][18] have been widely

used and deployed to handle big data. Customers want to

use a framework that can process large dynamic streams of

data on the fly and serve results with high throughput. For

instance, Yahoo! uses a stream processing engine to perform

for its advertisement pipeline processing, so that it can monitor

ad campaigns in real-time. Twitter uses a similar engine to

compute trending topics [5] in real time.
To meet this demand, several new stream processing engines

have been developed recently, and are widely in use in indus-

try, e.g., Storm [5], System S [26], Spark Streaming [27], and

others [9][10][21]. Apache Storm is the most popular among

these. A Storm application uses a directed graph (dataflow)

of operators (called “bolts”) that runs user-defined code to

process the streaming data.
Unfortunately, these new stream processing systems used

in industry largely lack an ability to seamlessly and efficiently

The first two authors contributed equally to the paper. This work was com-
pleted during the author’s study in University of Illinois at Urbana-Champaign.

scale the number of servers in an on-demand manner. On-

demand means that the scaling is performed when the user

(or some adaptive program) requests to increase or decrease

the number of servers in the application Today, Storm supports

an on-demand scaling request by simply unassigning all pro-

cessing operators and then reassigning them in a round robin

fashion to the new set of machines. This is not seamless as it

interrupts the ongoing computation for a long duration. It is

not efficient either as it results in sub-optimal throughput after

the scaling is completed (as our experiments show later).

Scaling-out and -in are critical tools for customers. For

instance, a user might start running a stream processing

application with a given number of servers, but if the incoming

data rate rises or if there is a need to increase the processing

throughput, the user may wish to add a few more servers

(scale-out) to the stream processing application. On the other

hand, if the application is currently under-utilizing servers,

then the user may want to remove some servers (scale-in) in

order to reduce dollar cost (e.g., if the servers are VMs in AWS

[12]). Supporting on-demand scale-out is preferable compared

to over-provisioning which uses more resources (and money

in AWS deployments), while on-demand scale-in is preferable

to under-provisioning.

On-demand scaling operations should meet two goals: 1) the

post-scaling throughput (tuples per sec) should be optimized

and, 2) the interruption to the ongoing computation (while the

scaling operation is being carried out) should be minimized.

We present a new system, named Stela (STream processing

ELAsticity), that meets these two goals. For scale-out, Stela

carefully selects which operators (inside the application) are

given more resources, and does so with minimal intrusion.

Similarly, for scale-in, Stela carefully selects which machine(s)

to remove in a way that minimizes the overall detriment to the

application’s performance.

To select the best operators to give more resources when

scaling-out, Stela uses a new metric called ETP (Effective
Throughput Percentage). The key intuition behind ETP is

to capture those operators (e.g., bolts and spouts in Storm)

that are both: i) congested, i.e., are being overburdened with

incoming tuples, and ii) affect throughput the most because

they reach a large number of sink operators. For scale-in, we

also use an ETP-based approach to decide which machine(s)

to remove and where to migrate operator(s).

The ETP metric is both hardware- and application- agnostic.

Thus Stela neither needs hardware profiling (which can be

intrusive and inaccurate) nor knowledge of application code.

Existing work on elasticity in System S [15][23], Stream-

2016 IEEE International Conference on Cloud Engineering

978-1-5090-1961-8/16 $31.00 © 2016 IEEE

DOI 10.1109/IC2E.2016.38

22

Cloud (elasticity in Borealis) [16], Stormy [21] and [17] pro-

pose the use of metrics such as the congestion index, through-

put, CPU, latency or network usage, etc. These metrics are

used in a closed feedback loop, e.g., under congestion, System

S determines when the parallelism (number of instances of an

operator) should increase, and then does so for all congested

operators. This is realistic only when infinite resources are

available. Stela assumes finite resources (fixed number of

added machines or removed machines, as specified by the

user), and thus has to solve not only the “when” problem,

but also the harder problem of deciding which operators need

to get/lose resources. We compare Stela against the closest-

related elasticity techniques from literature, i.e., [11].
The design of Stela is generic to any data flow system

(Section II-A). For concreteness, we integrated Stela into

Apache Storm. We present experimental results using micro-

benchmark Storm applications, as well as production ap-

plications from industry (Yahoo! Inc. and IBM [15]). Our

experiments show that Stela’s scale-out operation reduces

interruption time to a fraction as low as 12.5% that of Storm

and achieves throughput that is about 21-120% higher than

Storm’s. Stela’s scale-in operation performs 2X-5X better than

Storm’s default strategy. We believe our metric can be applied

to other systems as well.
The contributions of our work are: 1) development of

the novel metric, ETP, that captures the “importance” of an

operator, 2) to the best of knowledge, this is the first work to

describe and implement on-demand elasticity within Storm,

and 3) evaluation of our system on both micro-benchmark

applications and on applications used in production.

II. STELA POLICY AND THE ETP METRIC

In this section, we first define our data stream processing

model. Then, we focus on Stela scale-out and how it uses the

ETP metric. Finally we discuss scale-in.

A. Data Stream Processing Model and Assumptions
In this paper, we target distributed data stream processing

systems that represent each application as a directed acyclic

graph (DAG) of operators. An operator is a user-defined

logical processing unit that receives one or more streams of

tuples, processes each tuple, and outputs one or more streams

of tuples. We assume operators are stateless. We assume that

tuple sizes and processing rates follow an ergodic distribution.

These assumptions hold true for most Storm topologies used

in industry. An example of this model is shown in Figure 1.

Operators that have no parents are sources of data injection,

e.g., 1. They may read from a Web crawler. Operators with no

children are sinks, e.g., 6. The intermediate operators (e.g., 2-

5) perform processing of tuples. Each sink outputs data (e.g., to

a GUI or database), and the application throughput is the sum

of throughputs of all sinks in the application. An application

may have multiple sources and sinks.
An instance (of an operator) is an instantiation of the oper-

ator’s processing logic and is the physical entity that executes

the operator’s logic. The number of instances is correlated with

the operator’s parallelism level. For example, in Storm, these

instances are called “executors” (Section III-A).

Fig. 1: An Example Of Data Stream Processing Application.

B. Stela: Scale-Out Overview

In this section, we give an overview of how Stela supports

scale-out. When the user requests a scale-out with a given

number of new machines Stela needs to decide which opera-

tors to give more resources to, by increasing their parallelism.

Stela first identifies operators that are congested based on

their input and output rates. Then it calculates a per-operator

metric called Expected Throughput Percentage (ETP). ETP

takes the topology into account: it captures the percentage

of total 1 application throughput (across all sinks) that the

operator has direct impact on, but ignores all down-stream

paths in the topology that are already congested. This ensures

that giving more resources to a congested operator with higher

ETP will improve the effect on overall application throughput.

Thus Stela increases the parallelism of that operator with

the highest ETP (from among those congested). Finally Stela

recalculates the updated execution speed and Projected ETP
(given the latest scale-out) for all operators and selects the

next operator to increase its parallelism, and iterates this

process. To ensure load balance, the total number of such

iterations equals the number of new machines added times

average number of instances per machine pre-scale. We de-

termine the number of instances to allocate a new machine

as: Ninstances = (Total # o f instances)/(# o f machines), in

other words Ninstances is the average number of instances per

machine prior to scale-out. This ensures load balance post-

scale-out. The schedule of operators on existing machines is

left unchanged.

The ETP approach is essentially a greedy approach because

it assigns resources to the highest ETP operator in each

iteration. Other complex approaches to elasticity may be

possible, including graph theory and max-flow techniques–

however these do not exist in literature yet and would be non-

trivial to design. While we consider these to be interesting

directions, they are beyond the scope of this paper.

C. Congested Operators

Before calculating ETP for each operator, Stela determines

all congested operators in the graph by calling a CON-

GESTIONDETECTION procedure. This procedure considers

an operator to be congested if the combined speed of its

input streams is much higher than the speed at which the

input streams are being processed within the operator. Stela

measures the input rate, processing rate and output rate of an

1 This can also be generalized to a weighted sum of throughput across sinks.

23

operator as the sum of input rates, processing rates and output

rates, respectively, across all instances of that operator. An

application may have multiple congested operators. In order

to determine the best operators that should be migrated during

a cluster scaling operation, Stela quantifies the impact of

scaling an operator towards the application overall throughput

by using the ETP metric.

Stela continuously samples the input rate, emit rate and

processing rate of each operator in the processing the topology

respectively. The input rate of an operator is calculated as the

sum of emit rate towards this operator from all its parents.

Stela uses periodic collection every 10 seconds and calculates

these rates in a sliding window of recent tuples (of size 20

tuples). These values are chosen based on Storm’s default and

suggested values, e.g., the Storm scheduler by default runs

every 10s.

When the ratio of input to processing exceeds a threshold

CongestionRate, we consider that operator to be congested.

An operator may be congested because it’s overloaded by

too many tuples, or has inefficient resources, etc. When the

operator’s input rate equals its processing rate, it is not

considered to be congested. Note that we only compare input

rates and processing rates (not emit rates) – thus this applies to

operators like filter, etc., which may output a different rate than

the input rate. The CongestionRate parameter can be tuned as

needed and it controls the sensitivity of the algorithm: lower

CongestionRate values result in more congested operators

being captured. For Stela experiments, we set CongestionRate

to be 1.2.

D. Effective Throughput Percentage (ETP)

Effective Throughput Percentage (ETP): To estimate the

impact of each operator towards the application throughput,

Stela introduces a new metric called Effective Throughput Per-

centage (ETP). An operator’s ETP is defined as the percentage

of the final throughput that would be affected if the operator’s

processing speed were changed.

The ETP of an operator o is computed as:

ET Po =
T hroughputE f f ectiveReachableSinks

T hroughputwork f low

Here, T hroughputE f f ectiveReachableSinks denotes the sum of

throughput of all sinks reachable from o by at least one un-

congested path, i.e., a path consisting only of operators that

are not classified as congested. T hroughputwork f low denotes the

sum throughput of all sink operators of the entire application.

The algorithm to calculate an operator’s ETP is shown in Al-

gorithm 1. This algorithm does a depth first search throughout

the application DAG, and calculates ETPs via a post-order

traversal. ProcessingRateMap stores processing rates of all

operators. Note that if an operator o has multiple parents, then

the effect of o’s ETP is the same at each of its parents (i.e. it

is replicated, not split).

While ETP is not a perfect measurement of post-scaling

performance, it provides a good estimate. Our results in

Section 4 show that using ETP is a reasonable and practical

approach.

Fig. 2: A sliver of a stream processing application. Each

operator is denoted by its input/execution speed. Shaded

operators are congested. CongestionRate=1.

Algorithm 1 Find ETP of an operator o of the application

1: function FINDETP(ProcessingRateMap)

2: if o.child = null then
return ProcessingRateMap.get(o)/T hroughputSum

//o is a sink

3: end if
4: SubtreeSum← 0;

5: for each descendant child ∈ o do
6: if child.congested = true then
7: continue; // if the child is congested, give up

the subtree rooted at that child

8: else
9: SubtreeSum+= FINDETP(child);

10: end if
11: end for

return SubtreeSum
12: end function

ETP Calculation Example and Intuition: We illustrate

the ETP calculation using the example application in Figure 2.

The processing rate of each operator is shown. In Figure 2,

the operators congested are shown as shaded, i.e. operators 1,

3, 4 and 6. The total throughput of the workflow is calculated

as the sum of throughput of sink operators 4, 7, 8, 9 and 10

as T hroughputwork f low=4500 tuples/s.

Let us calculate the ETP of operator 3. Its reachable sink op-

erators are 7, 8, 9 and 10. Of these only 7 and 8 are considered

to be the “effectively” reachable sink operators, as they are

both reachable via an un-congested path. Thus, increasing the

speed of operator 3 will improve the throughput of operators

7 and 8. However, operator 6 is a non-effective reachable for

operator 3, because operator 6 is already congested – thus

increasing operator 3’s resources will only increase operator

6’s input rate and make operator 6 further congested, without

improving its processing rate. Thus, we ignore the subtree of

operator 6 when calculating 3’s ETP. The ETP of operator 3

is: ET P3 = (1000+1000)/4500 = 44%.

Similarly, for operator 1, the sink operators 4, 7, 8, 9 and

10 are reachable, but none of them are reachable via a non-

congested path. Thus the ETP of operator 1 is 0. Likewise, we

can calculate the ETP of operator 4 as 44% and the ETP of

24

operator 6 as 11%. Thus, the priority order for Stela to assign

resources to these operators is: 3, 4, 6, 1.

E. Iterative Assignment and Intuition

During each iteration, Stela calculates the ETP for all

congested operators. Stela targets the operator with the highest

ETP and it increases the parallelism of the operator by

assigning a new instance of that operator at the newly added

machine. If multiple machines are being added, then the

target machine is chosen in round-robin manner. Overall this

algorithm runs Ninstances iterations to select Ninstances target

operators (Section II-A showed how to calculate Ninstances).

Algorithm 2 depicts the pseudocode for scale-out. In each

iteration, Stela constructs a CongestedMap, as explained ear-

lier in Section II-C. If there are no congested operators in the

application, Stela chooses a source operator as a target – this

is done to increase the input rate of the entire application.

If congested operators do exist, for each congested operator,

Stela finds its ETP using the algorithm discussed in Section

II-D. The result is sorted into ET PMap. Stela chooses the

operator that has the highest ETP value from ET PMap as a

target for the current iteration. It increases the parallelism of

this operator by assigning one additional random instance to

it, on one of the new machines in a round robin manner.

For the next iteration, Stela estimates the processing rate

of the previously targeted operator o proportionally, i.e., if

the o previously had an output rate E and k instances,

then o’s new projected processing rate is E · k+1
k . This is a

reasonable approach since all machines have the same number

of instances and thus proportionality holds. Note that even

though this may not be accurate, we find that it works in

practice. Then Stela uses this to update the output rate for o,

and the input rates for o’s children (o’s children’s processing

rates do not need updates as their resources remain unchanged.

The same applies to o’s grand-descendants.). Stela updates

emit rate of target operator in the same manner to ensure

estimated operator submission rate can be applied.

Once this is done, Stela re-calculates the ETP of all opera-

tors by again using Algorithm 1 – we call these new ETPs

as projected ETPs, or PETPs, because they are based on

estimates. The PETPs are used as ETPs for the next iteration.

These iterations are repeated until all available instance slots at

the new machines are filled. Once this procedure is completed,

the schedule is committed by starting the appropriate executors

on new instances.

In Algorithm 2, procedure FindETP involves searching for

all reachable sinks for every congested operator – as a result

each iteration of Stela has a running time complexity of O(n2)
where n is the number of operators in the workflow. The entire

algorithm has a running time complexity of O(m ·n2), where

m is the number of new instance slots at the new workers.

F. Stela: Scale-In

For scale-in, we assume the user only specifies the number

of machines to be removed and Stela picks the “best” machines

from the cluster to remove (if the user specifies the exact

machines to remove, the problem is no longer challenging).

Algorithm 2 Stela: Scale-out

1: function SCALE-OUT

2: slot← 0;

3: while slot < Ninstances do
4: CongestedMap← CONGESTIONDETECTION;

5: if CongestedMap.empty = true then
return source; // none of the operators are

congested

6: end if
7: for each operator o ∈ work f low do
8: ET PMap← FINDETP(Operator o);

9: end for
10: target← ET PMap.max;

11: ProcessingRateMap.update(target);
12: EmitRateMap.update(target);
13: //update the target execution rate

14: slot ++;

15: end while
16: end function

We describe how techniques used for scale-out can also be for

scale-in, particularly, the ETP metric. For scale-in we will not

be merely calculating the ETP per operator but instead per
machine in the cluster. That is, we first, calculate the ETPSum
for each machine:

ET PSum(machinek) =
n
∑

i=1
FindET P(FindComp(τi))

ETPSum for a machine is the sum of all ETP of instances

of all operators that currently reside on the machine. Thus,

for every instance, τi, we first find the operator that instance

τi is an instance of (e.g., operatoro) and then find the ETP

of that operatoro. Then, we sum all of these ETPs. ETPSum

of a machine is thus an indication of how much the instances

executing on that machine contribute to the overall throughput.

The intuition is that a machine with lower ETPSum is a

better candidate to be removed in a scale-in operation than

a machine with higher ETPSum since the former influences

less the application in both throughput and downtime.

The SCALE-IN procedure of Algorithm 3 is called itera-

tively, as many times as the number of machines requested

to be removed. The procedure calculates the ETPSum for

every machine in the cluster and puts the machine and its

corresponding ETPSum into the ETPMachineMap. The ETP-

MachineMap is sorted in increasing order of ETPSum values.

The machine with the lowest ETPSum will be the target

machine to be removed in this round of scale-in. Operators

from the machine that is chosen to be removed are re-assigned

to the remaining machines in the cluster, in a round robin

fashion in increasing order of their ETPSum.

Performing operator migration to machines with lower

ETPSum will have less of an effect on the overall performance

since machines with lower ETPSum contribute less to the

overall performance. This also helps shorten the amount of

downtime the application experiences due to the rescheduling.

This is because while adding new instances to a machine,

existing computation may need to be paused for a certain du-

25

Algorithm 3 Stela: Scale-in

1: function SCALE-IN

2: for each Machine n ∈ cluster do
3: ET PMachineMap← ETPMACHINESUM(n)
4: end for
5: ET PMachineMap.sort()
6: //sort ETPSums by increasing order

7: REMOVEMACHINE(ETPMachineMap.first())

8: end function
9: function REMOVEMACHINE(Machine n, ETPMa-

chineMap map)

10: for each instance τi on n do
11: if i > map.size then
12: i← 0

13: end if
14: Machine x← map.get(i)
15: ASSIGN(τi, x)

16: //assigns instances to a round robin fashion

17: i++
18: end for
19: end function

ration. Instances on a machine with lower ETPSum contribute

less to the overall performance and thus this approach causes

lower overall downtime.

After this schedule is created, Stela commits it by migrat-

ing operators from the selected machines, and then releases

these machines. Algorithm 3 involves sorting ETPSum, which

results in a running time complexity of O(nlog(n)).

III. IMPLEMENTATION

We have implemented Stela as a custom scheduler inside

Apache Storm [5].

A. Overview of Apache Storm

Storm Application: Apache Storm is a distributed real time

processing framework that can process incoming live data [5].

In Storm, a programmer codes an application as a Storm

topology, which is a graph, typically a DAG (While Storm

topologies allow cycles, they are rare and we do not consider

them in this paper.), of operators, sources (called spouts), and

sinks. The operators in Storm are called bolts. The streams

of data that flow between two adjacent bolts are composed of

tuples. A Storm task is an instantiation of a spout or bolt.

Users can specify a parallelism hint to say how many

executors each bolt or spout should be parallelized into. Users

can also specify the number of tasks for the bolt or spout

– if they don’t, Storm assumes one task per executor. Once

fixed, Storm does not allow the number of tasks for a bolt

to be changed, though the number of executors is allowed

to change, to allow multiplexing – in fact Stela leverages this

multiplexing by varying the number of executors for congested

bolts.

Storm uses worker processes. In our experiments, a machine

may contain up to 4 worker processes. Worker processes in

turn contain executors (equivalent to an “instance” in our

model in Section II-A). An executor is a thread that is spawned

in a worker process. An executor may execute one or more

tasks. If an executor has more than one task, the tasks are

executed in a sequential manner inside. The number of tasks

cannot be changed in Storm, but the number of executors

executing the tasks can increase and decrease.
The user specifies in a topology (equivalent to a DAG) the

bolts, the connections, and how many worker processes to

use. The basic Storm operator, namely the bolt, consumes

input streams from its parent spouts and bolts, performs

processing on received data, and emits new streams to be

received and processed downstream. Bolts may filter tuples,

perform aggregations, carry out joins, query databases, and in

general any user defined functions. Multiple bolts can work

together to compute complex stream transformations that may

require multiple steps, like computing a stream of trending

topics in tweets from Twitter [5]. Bolts in Storm are stateless.

Vertices 2-6 in Figure 1 are examples of Bolts.
Storm Infrastructure: A typical Storm Cluster has two types

of machines: the master node, and multiple workers nodes. The

master node is responsible for scheduling tasks among worker

nodes. The master node runs a daemon called Nimbus. Nimbus

communicates and coordinates with Zookeeper[6] to maintain

a consistent list of active worker nodes and to detect failure

in the membership.
Each server runs a worker node, which in turn runs a

daemon called the supervisor. The supervisor continually

listens for the master node to assign it tasks to execute. Each

worker machine contains many worker processes which are

the actual containers for tasks to be executed. Nimbus can

assign any task to any worker process on a worker node. Each

source (spout) and operator (bolt) in a Storm topology can

be parallelized to potentially improve throughput. The user

specifies the parallelization hint for each bolt and spout.
Storm Scheduler: Storm’s default Storm scheduler (inside

Nimbus) places tasks of all bolts and spouts on worker

processes. Storm uses a round robin allocation in order to

balance out load. However, this may result in tasks of one

spout or bolt being placed at different workers. Currently,

the only method for vanilla Storm to do any sort of scale-

in or -out operation, is for the user to execute a re-balance
operation. This re-balance operation simply deletes the current

scheduling and re-schedules all tasks from scratch in a round

robin fashion to the modified cluster. This is inefficient, as our

experiments later show.

B. Core Architecture
Stela runs as a custom scheduler in a Java class that

implements a predefined IScheduler interface in Storm. A

user can specify which scheduler to use in a YAML formated

configuration file call storm.yaml. Our scheduler runs as part

of the Storm Nimbus daemon. The architecture of Stela’s

implementation in Storm is visually presented in Figure 3.

It consists of three modules:

1) StatisticServer - This module is responsible for collect-

ing statistics in the Storm cluster, e.g., throughput at

each task, bolt, and for the topology. This data is used

as input to congestion detection in Sections.

26

Fig. 3: Stela Architecture.

2) GlobalState - This module stores important state infor-

mation regarding the scheduling and performance of a

Storm Cluster. It holds information about where each

task is placed in the cluster. It also stores statistics

like sampled throughputs of incoming and outgoing

traffic for each bolt for a specific duration, and this is

used to determine congested operators as mentioned in

Section II-C.

3) Strategy - This module provides an interface for scale-

out strategies to implement so that different strategies

(e.g., Algorithm 2) can be easily swapped in and out

for evaluation purposes. This module calculates a new

schedule based on the scale-in or scale-out strategy in

use and uses information from the Statistics and Global-

State modules. The core Stela policy (Section II-A) and

alternative strategies (Section III-C) are implemented

here.

4) ElasticityScheduler - This module is the custom sched-

uler that implements IScheduler interface. This class

starts the StatisticServer and GlobalState modules, and

invokes the Strategy module when needed.

When a scale-in or -out signal is sent by the user to the

ElasticityScheduler, a procedure is invoked that detects newly

joined machines based on previous membership. The Elastic-

ityScheduler invokes the Strategy module, which calculates

the entire new scheduling, e.g., for scale-out, it decides all

newly created executors that need to be assigned to newly

joined machines. The new scheduling is then returned to the

ElasticityScheduler which atomically (at the commit point)

changes the current scheduling in the cluster. Computation is

thereafter resumed.

Fault-tolerance: When no scaling is occurring, failures are

handled the same way as in Storm, i.e., Stela inherits Storm’s

fault-tolerance. If a failure occurs during a scaling operation,

Stela’s scaling will need to be aborted and restarted. If the

scaling is already committed, failures are handled as in Storm.

C. Alternative Strategies

Initially, before we settled on the ETP design in Section II,

we attempted to design several alternative topology-aware

strategies for scaling out. We describe these below, and we

will compare the ETP-based approach against the best of these

in our experiments in Section IV. One of these strategies also

captures existing work [11].

Topology-aware strategies migrate existing executors in-

stead of creating more of them (as Stela does). These strategies

aim to find “important” components/operators in a Storm

Topology. Operators, in scale-out, deemed “important” are

given priority for migration to the new worker nodes. These

strategies are:

• Distance from spout(s) - In this strategy, we prioritize

operators that are closer to the source of information as

defined in Section II-A. The rationale for this method is

that if an operator that is more upstream is a bottleneck,

it will affect the performance of all bolts that are further

downstream.

• Distance to output bolt(s) - Here, higher priority for use

of new resources are given to bolts that are closer to the

sink or output bolt. The logic here is that bolts connected

near the sink affect the throughput the most.

• Number of descendants - Here, importance is given to

bolts with many descendants (children, children’s chil-

dren, and so on) because such bolts with more de-

scendants potentially have a larger effect on the overall

application throughput.

• Centrality - Here, higher priority is given to bolts that

have a higher number of in- and out-edges adjacent to

them (summed up). The intuition is that “well-connected”

bolts have a bigger impact on the performance of the

system then less well-connected bolts.

• Link Load - In this strategy, higher priority is given to

bolts based on the load of incoming and outgoing traffic.

This strategy examines the load of links between bolts and

migrates bolts based on the status of the load on those

links. Similar strategies have been used in [11] to improve

Storm’s performance. We implemented two strategies for

evaluation: Least Link Load and Most Link Load. Least

Link Load strategy sorts executors by the load of the

links that it is connected to and starts migrating tasks to

new workers by attempting to maximize the number of

adjacent bolts that are on the same server. The Most Link

Load strategy does the reverse.

During our experiments, we found that all the above strate-

gies performed comparably for most topologies, however the

Link Load based strategy was the only one that improved

27

performance for the Linear topology. Thus, the Least Link

Load based strategy is representative of strategies that attempt

to minimize the network flow volume in the topology schedule.

Hence in the next section, we will compare the performance

of the Least Link Load based strategy with Stela. This is thus

a comparison of Stela against [11].

IV. EVALUATION

Our evaluation is two-pronged, and consists of both mi-

crobenchmark topologies and real topologies (including two

from Yahoo!). We adopt this approach due to the absence

of standard benchmark suites (like TPC-H or YCSB) for

stream processing systems. Our microbenchmarks include

small topologies such as star, linear and diamond, because we

believe that most realistic topologies will be a combination of

these. We also use two topologies from Yahoo! Inc., which

we call PageLoad topology and Processing topology, as well

as a Network Monitoring topology [15] . We also present

a comparison among Stela, the Link Load Strategy (Section

III-C and [11]), and Storm’s default scheduler (which is state

of the art).

A. Experimental Setup

For our evaluation, we used two types of machines from

Emulab [7] testbed to perform our experiments. Our typical

Emulab setup consists of a number of machines running

Ubuntu 12.04 LTS images, connected via a 100Mpbs VLAN.

A type 1 machine has one 3 GHz processor, 2 GB of memory,

and 10,000 RPM 146 GB SCSI disks. A type 2 machine has

one 2.4 GHz quad core processor, 12 GB of memory, 750 GB

SATA disks. The settings for all topologies tested are listed in

Table I. For each topology, the same scaling operations were

applied to all strategies.

B. Micro-benchmark Experiments

Storm topologies can be arbitrary. To capture this, we cre-

ated three micro-topologies that commonly appear as building

blocks for larger topologies. They are:

• Linear - This topology has 1 source and 1 sink with a

sequence of intermediate bolts.

• Diamond - This topology has 1 source and 1 sink,

connected parallel via several intermediate bolts (Thus

tuples will be processed via the path of “source - bolt -

sink”.

• Star - This topology has multiple sources connected to

multiple sinks via a single unique intermediate bolt.

Figure 4a, 4b, 4c present the throughput results for these

topologies. For the Star, Linear, and Diamond topologies we

observe that Stela’s post scale-out throughput is around 65%,

45%, 120% better than that of Storm’s default scheduler,

respectively. This indicates that Stela correctly identifies the

congested bolts and paths and prioritizes the right set of

bolts to scale out. The lowest improvement is for the Linear

topology (45%) – this lower improvement is due to the limited

diversity of paths, where even a single congested bolt can

bottleneck the sink.

In fact, for Linear and Diamond topologies, Storm’s default

scheduler does not improve throughput after scale-out. This is

because Storm’s default scheduler does not increase the num-

ber of executors, but attempts to migrate executors to a new

machine. When an executor is not resource-constrained and

it is executing at maximum performance, migration doesn’t

resolve the bottleneck.

C. Yahoo Storm Topologies and Network Monitoring Topology

We obtained the layouts of two topologies in use at Yahoo!

Inc. We refer to these two topologies as the Page Load topol-

ogy and Processing topology (these are not the original names

of these topologies). The layout of the Page Load Topology is

displayed in Figure 5a, the layout of the Processing topology

is displayed in Figure 5b and the layout of the Network

Monitoring topology is displayed in Figure 5c.

We examine the performance of three scale-out strategies:

default, Link based (Section III-C and [11]), and Stela. The

throughput results are shown in Figure 6. Recall that link load

based strategies reduce the network latency of the workflow

by co-locating communicating tasks to the same machine.

From Figure 6, we observe that Stela improves the through-

put by 80% after a scale-out for both Yahoo topologies.

In comparison, Least Link Load strategy barely improves

the throughput after a scale-out because migrating tasks that

are not resource-constrained will not significantly improve

performance. The default scheduler actually decreases the

throughput after the scale-out, since it simply unassigns all

executors and reassigns all the executors in a round robin fash-

ion to all machines including the new ones. This may cause

machines with “heavier” bolts to be overloaded thus creating

newer bottlenecks that are damaging to performance especially

for topologies with a linear structure. In comparison, Stela’s

post-scaling throughput is about 125% better than Storm’s

post-scaling throughput for both Page Load and Processing

topologies – this indicates that Stela is able to find the most

congested bolts and paths and give them more resources.

In addition to the above two topologies, we also looked at

a published application from IBM [15], and we wrote from

scratch a similar Storm topology (shown in Figure 5c). By

increasing cluster size from 8 to 9, our experiment (Figure 6c)

shows that Stela improves the throughput by 21% by choosing

to parallelize the congested operator closest to the sink. In the

meantime Storm default scheduler does not improve post scale

throughput and Least Link Load strategy decreases system

throughput.

D. Convergence Time

We measure interruption to ongoing computation by mea-

suring the convergence time. The convergence time is the

duration of time between when the scale-out operation starts

and when the overall throughput of the Storm Topology

stabilizes. Concretely, the convergence time duration stopping

criteria are: 1) the throughput oscillates twice above and twice

below the average of post scale-out throughput, and 2) the

oscillation is within a small standard deviation of 5%. Thus a

lower convergence time means that the system is less intrusive

28

Toplogy Type # of tasks per
Component

Initial # of Execu-
tors per Compo-
nent

of Worker Pro-
cesses

Initial Cluster Size Cluster Size after
Scaling

Machine Type

Star 4 2 12 4 5 1
Linear 12 6 24 6 7 1
Diamond 8 4 24 6 7 1
Page Load 8 4 28 7 8 1
Processing 8 4 32 8 9 1
Network 8 4 32 8 9 2
Page Load Scale-
in

15 15 32 8 4 1

TABLE I: Experiment Settings and Configurations.

(a) Star Topology. (b) Linear Topology. (c) Diamond Topology.

Fig. 4: Scale-out: Throughput Behavior for Micro-benchmark Topologies. (Window size 10 seconds)

(a) Layout of Page Load Topology.
(b) Layout of Processing Topology. (c) Layout of Network Topology [15].

Fig. 5: Two Yahoo! Topologies and a Network Monitoring Topology derived from [15]

(a) Page Load topology. (b) Processing topology. (c) Network Monitoring topology.

Fig. 6: Scale-out: Throughput Behavior for Yahoo! Topologies and Network Monitoring Topology. (Window size 10 seconds)

during the scale out operation, and it can resume meaningful

work earlier.

Figure 7a and Figure 7b show the convergence time for

both Micro-benchmark Topologies and Yahoo Topologies. We

observe that Stela is far less intrusive than Storm when scaling

out in the Diamond topology (92% lower) and about as

intrusive as Storm in the Linear topology. Stela takes longer

to converge than Storm in some cases like the Star topology,

primarily because a large number of bolts are affected all at

once by the Stela’s scaling. Nevertheless the post-throughput

scaling is worth the longer wait (Figure 4a). Further, for the

Yahoo Topologies, Stela’s convergence time is 88% and 75%

lower than that of Storm’s default scheduler.

The main reason why Stela has a better convergence time

than both Storm’s default scheduler and Least Link Load strat-

egy [11] is that Stela does not change the current scheduling at

existing machines (unlike Storm’s default strategy and Least

Link Load strategy), instead choosing to schedule operators at

the new machines only.

In Network Monitoring topology, Stela experiences longer

convergence time than Storm’s default scheduler and Least

Link Load strategy due to re-parallelization during the scale-

out operation (Figure 7c). However, the benefit, as shown in

Figure 6c, is the higher post-scale throughput provided by

29

(a) Throughput Convergence Time for
Micro-benchmark Topologies.

(b) Throughput Convergence Time for
Yahoo! Topologies.

(c) Throughput Timeline for Network
Monitoring Topologies.

Fig. 7: Scale-out: Convergence Time Comparison (in seconds).

Stela.

E. Scale-In Experiments

We examine the performance of Stela scale-in by running

Yahoo’s PageLoad topology. The initial cluster size is 8 and

Figure 8a shows the throughput change after shrinking cluster

size to 4 machines. (We initialize the operator allocation

so that each machine can be occupied by tasks from fewer

than 2 operators (bolts and spouts)). We compare against the

performance of a round robin scheduler (same as Storm’s

default scheduler), using two alternative groups of randomly

selected machines.

We observe Stela preserves throughput after scale-in while

the Storm groups experience 80% and 40% throughput de-

crease respectively. Thus, Stela’s post scale-in throughput is

2X - 5X higher than randomly choosing machines to remove.

Stela also achieves 87.5% and 75% less down time (time

duration when throughput is zero) than group 1 and group

2, respectively – see Figure 8b. This is primarily because in

Stela migrating operators with low ETP will intrude less on the

application, which will allow downstream congested compo-

nents to digest tuples in their queues and continue producing

output. In the PageLoad Topology, the two machines with

lowest ETPs are chosen to be redistributed by Stela, which

generates less intrusion for the application thus significantly

better performance than Storm’s default scheduler.

Thus, Stela is intelligent at picking the best machines to

remove (via ETPSum). In comparison, Storm has to be lucky.

In the above scenario, 2 out of the 8 machines were the “best”.

The probability that Storm would have been lucky to pick both

(when it picks 4 at random) =
(

6
2

)
/
(

8
4

)
= 0.21, which is low.

V. RELATED WORK

Based on its predecessor Aurora [8], Borealis [24] is a

stream processing engine that enables queries to be modified

on the fly. Borealis focuses on load balancing on individual

machines and distributes load shedding in a static environment.

Borealis also uses ROD (resilient operator distribution) to

determine the best operator distribution plan that is closest

to an “ideal” feasible set: a maximum set of machines that are

underloaded. Borealis does not explicitly support elasticity.

Stormy [21] uses a logical ring and consistent hashing to

place new nodes upon a scale out. It does not take congestion

into account, which Stela does. StreamCloud [16] builds

elasticity into the Borealis Stream Processing Engine [9].

StreamCloud modifies the parallelism level by splitting queries

into sub queries and uses rebalancing to adjust resource usage.

Stela does not change running topologies because we consider

it intrusive to the applications.

SEEP [13] uses an approach to elasticity that mainly focuses

on operator’s state management. It proposes mechanisms to

backup, restore and partition operators’ states in order to

achieve short recovery time. There have been several other

papers focusing on elasticity for stateful stream processing

systems. [15][23] from IBM both enable elasticity for IBM

System S [10][19][26] and SPADE [14], by increasing the

parallelism of processing operators. These papers apply net-

working concepts such as congestion control to expand and

contract the parallelism of a processing operator by constantly

monitoring the throughput of its links. These works do not

assume fixed number of machines provided (or taken away)

by the users. Our system aims at intelligently prioritizing

target operators to further parallelize to (or migrate from) user-

determined number of machines joining in (or taken away

from) the cluster, with a mechanism to optimize throughput.

Twitter’s Heron [20] improves Storm’s congestion handling

mechanism by using back pressure – however elasticity is not

explicitly addressed. Recent work [22] proposes an elasticity

model that provides latency guarantee by tuning task-wise

parallelism level in a fixed size cluster. Meanwhile, another

recent work [17] implemented stream processing system elas-

ticity. However, [17] focused on latency (not throughput) and

on policy (not mechanism). Nevertheless, Stela’s mechanisms

can be used as a black box inside of [17].

Some of these works have looked at policies for adaptivity

[17], or [21][15][23][16] focus on the mechanisms for elastic-

ity. These are important building blocks for adaptivity. To the

best of our knowledge, [11] is the only existing mechanism for

elasticity in stream processing systems – Section IV compared

Stela against it.

VI. CONCLUSION

In this paper, we presented novel scale-out and scale-in tech-

niques for stream processing systems. We have created a novel

metric, ETP (Effective Throughput Percentage), that accurately

captures the importance of operators based on congestion

and contribution to overall throughput. For scale-out, Stela

first selects congested processing operators to re-parallelize

based on ETP. Afterwards, Stela assigns extra resources to

30

(a) Throughput Convergence Time for Yahoo! Topologies. (b) Post Scale-in Throughput Timeline

Fig. 8: Scale-in Experiments (Window size 10 seconds).

the selected operators to reduce the effect of the bottleneck.

For scale-in, we also use a ETP-based approach that decides

which machine to remove and where to migrate affected oper-

ators. Our experiments on both micro-benchmarks Topologies

and Yahoo Topologies showed significantly higher post-scale

out throughput than default Storm and Link-based approach,

while also achieving faster convergence. Compared to Apache

Storm’s default scheduler, Stela’s scale-out operation reduces

interruption time to a fraction as low as 12.5% and achieves

throughput that is 45-120% higher than Storm’s. Stela’s scale-

in operation chooses the right set of servers to remove and

performs 2X-5X better than Storm’s default strategy.

ACKNOWLEDGEMENT

We thank our collaborators at Yahoo! Inc. for providing

us the Storm topologies: Matt Ahrens, Bobby Evans, Derek

Dagit, and the whole Storm development team at Yahoo. This

work was supported in part by the following grants: NSF

CNS 1409416, NSF CNS 1319527, NSF CCF 0964471, and

AFOSR/AFRL FA8750-11-2-0084, and a generous gift from

Microsoft.

REFERENCES

[1] “Apache Hadoop,” http://hadoop.apache.org/, 2016, ONLINE.
[2] “Apache Hive,” https://hive.apache.org/, 2016, ONLINE.
[3] “Apache Pig,” http://pig.apache.org/, 2016, ONLINE.
[4] “Apache Spark,” https://spark.apache.org/, 2016, ONLINE.
[5] “Apache Storm,” http://storm.incubator.apache.org/, 2016, ONLINE.
[6] “Apache Zookeeper,” http://zookeeper.apache.org/, 2016, ONLINE.
[7] “Emulab,” http://emulab.net/, 2016, ONLINE.
[8] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin,

E. Galvez, M. Hatoun, A. Maskey, A. Rasin et al., “Aurora: A data
stream management system,” in Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data. ACM, 2003, pp.
666–666.

[9] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina et al., “The
design of the Borealis stream processing engine.” in The Conference on
Innovative Data Systems Research (CIDR), vol. 5, 2005, pp. 277–289.

[10] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, P. Selo,
Y. Park, and C. Venkatramani, “SPC: A distributed, scalable platform for
data mining,” in Proceedings of the 4th International Workshop on Data
Mining Standards, Services and Platforms. ACM, 2006, pp. 27–37.

[11] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling
in Storm,” in Proceedings of the 7th ACM International Conference on
Distributed Event-based Systems. ACM, 2013, pp. 207–218.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[13] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using

operator state management,” in Proceedings of the 2013 ACM SIGMOD
international conference on Management of data. ACM, 2013, pp.
725–736.

[14] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “SPADE: The
System S declarative stream processing engine,” in Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data.
ACM, 2008, pp. 1123–1134.

[15] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for
data stream processing,” IEEE Transactions on Parallel and Distributed
Systems., vol. 25, no. 6, pp. 1447–1463, 2014.

[16] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez, “StreamCloud: An elastic and scalable data streaming sys-
tem,” IEEE Transactions on Parallel and Distributed Systems., vol. 23,
no. 12, pp. 2351–2365, 2012.

[17] T. Heinze, L. Roediger, A. Meister, Y. Ji, Z. Jerzak, and C. Fetzer,
“Online parameter optimization for elastic data stream processing,” in
Proceedings of the Sixth ACM Symposium on Cloud Computing. ACM,
2015, pp. 276–287.

[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
ACM SIGOPS Operating Systems Review, vol. 41, no. 3. ACM, 2007,
pp. 59–72.

[19] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and
C. Venkatramani, “Design, implementation, and evaluation of the linear
road benchmark on the stream processing core,” in Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data.
ACM, 2006, pp. 431–442.

[20] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream
processing at scale,” in Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data. ACM, 2015, pp.
239–250.

[21] S. Loesing, M. Hentschel, T. Kraska, and D. Kossmann, “Stormy:
An elastic and highly available streaming service in the cloud,” in
Proceedings of the 2012 Joint EDBT/ICDT Workshops. ACM, 2012,
pp. 55–60.

[22] B. Lohrmann, P. Janacik, and O. Kao, “Elastic stream processing with
latency guarantees,” in Distributed Computing Systems (ICDCS), 2015
IEEE 35th International Conference on, June 2015, pp. 399–410.

[23] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu, “Elastic
scaling of data parallel operators in stream processing,” in IEEE Inter-
national Symposium on Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE, 2009, pp. 1–12.

[24] N. Tatbul, Y. Ahmad, U. Çetintemel, J.-H. Hwang, Y. Xing, and
S. Zdonik, “Load management and high availability in the Borealis dis-
tributed stream processing engine,” in GeoSensor Networks. Springer,
2008, pp. 66–85.

[25] M. Wall, “Big Data: Are you ready for blast-off?” http://www.bbc.com/
news/business-26383058, 2016, ONLINE.

[26] K.-L. Wu, K. W. Hildrum, W. Fan, P. S. Yu, C. C. Aggarwal, D. A.
George, B. Gedik, E. Bouillet, X. Gu, G. Luo et al., “Challenges and
experience in prototyping a multi-modal stream analytic and monitoring
application on System S,” in Proceedings of the 33rd International
Conference on Very Large Databases. VLDB Endowment, 2007, pp.
1185–1196.

[27] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream processing on
large clusters,” in Proceedings of the 4th USENIX conference on Hot
Topics in Cloud Computing. USENIX Association, 2012, pp. 10–10.

31

