
© 2021 Le Xu

ELASTIC TECHNIQUES TO HANDLE DYNAMISM IN REAL-TIME DATA
PROCESSING SYSTEMS

BY

LE XU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor Indranil Gupta, Chair
Professor Klara Nahrstedt
Assistant Professor Jian Huang
Assistant Professor Shivaram Venkataraman, University of Wisconsin-Madison

ABSTRACT

Real-time data processing is a crucial component of cloud computing today. It is widely

adopted to provide an up-to-date view of data for social networks, cloud management, web

applications, edge, and IoT infrastructures. Real-time processing frameworks are designed

for time-sensitive tasks such as event detection, real-time data analysis, and prediction.

Compared to handling offline, batched data, real-time data processing applications tend to

be long-running and are prone to performance issues caused by many unpredictable envi-

ronmental variables, including (but not limited to) job specification, user expectation, and

available resources.

In order to cope with this challenge, it is crucial for system designers to improve frame-

works’ ability to adjust their resource usage to adapt to changing environmental variables,

defined as system elasticity. This thesis investigates how elastic resource provisioning helps

cloud systems today process real-time data while maintaining predictable performance under

workload influence in an automated manner. We explore new algorithms, framework design,

and efficient system implementation to achieve this goal.

On the other hand, distributed systems today need to continuously handle various ap-

plication specifications, hardware configurations, and workload characteristics. Maintaining

stable performance requires systems to explicitly plan for resource allocation upon start-

ing an application and tailor allocation dynamically during run time. In this thesis, we

show how achieving system elasticity can help systems provide tunable performance under

the dynamism of many environmental variables without compromising resource efficiency.

Specifically, this thesis focuses on the two following aspects:

• Elasticity-aware Scheduling: Real-time data processing systems today are often de-

signed in resource-, workload-agnostic fashion. As a result, most users are unable to

perform resource planning before launching an application or adjust resource alloca-

tion (both within and across application boundaries) intelligently during the run. The

first part of this thesis work (Stela [1], Henge [2], Getafix [3]) explores efficient mecha-

nisms to conduct performance analysis while also enabling elasticity-aware scheduling

in today’s cloud frameworks.

• Resource Efficient Cloud Stack: The second line of work in this thesis aims to improve

underlying cloud stacks to support self-adaptive, highly efficient resource provision-

ing. Today’s cloud systems enforce full isolation that prevents resource sharing among

ii

applications at a fine granularity over time. This work (Cameo [4], Dirigo) builds real-

time data processing systems for emerging cloud infrastructures with high resource

utilization through fine-grained resource sharing.

Given that the market for real-time data analysis is expected to increase by the annual

rate of 28.2% and reach 35.5 billion by the year 2024 [5], improving system elasticity can in-

troduce a significant reduction to deployment cost and increase in resource utilization. Our

works improve the performances of real-time data analytics applications within resource

constraints. We highlight some of the improvements as the following: i) Stela explores

elastic techniques for single-tenant, on-demand dataflow scale-out and scale-in operations.

It improves post-scale throughput by 45-120% during on-demand scale-out and post-scale

throughput by 2-5× during on-demand scale-in. ii) Henge develops a mechanism to map

application’s performance into a unified scale of resource needs. It reduces resource consump-

tion by 40-60% by maintaining the same level of SLO achievement throughout the cluster.

iii) Getafix implements a strategy to analyze workload dynamically and proposes a solution

that guides the systems to calculate the number of replicas to generate and the placement

plan of these replicas adaptively. It achieves comparable query latency (both average and

tail) by achieving 1.45-2.15× memory savings. iv) Cameo proposes a scheduler that supports

data-driven, fine-grained operator execution guided by user expectations. It improves cluster

utilization by 6× and reduces the performance violation by 72% while compacting more jobs

into a shared cluster. v) Dirigo performs fully decentralized, function state-aware, global

message scheduling for stateful functions. It is able to reduce tail latency by 60% compared

to the local scheduling approach and reduce remote state accesses by 19× compared to the

scheduling approach that is unaware of function states. These works can potentially lead to

profound cost savings for both cloud providers and end-users.

iii

To my parents, for their love and support.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Professor

Indranil Gupta. I have joined Indy’s research group as a master’s student, and he has been

my first mentor in system research and introduced me to the field of distributed systems.

Throughout the course of my Ph.D. journey, he has been encouraging and patient and

helped me through many difficult times. His profound knowledge in research inspired me to

continue building my research skills, and he also gave me the freedom to explore problems

I’m interested in independently. Beyond research, he has also helped me tremendously with

career advice as a researcher and an educator.

Next, I would like to extend my deepest appreciation to the rest of my thesis committee:

Professor Klara Nahrstedt, Professor Jian Huang, and Professor Shivaram Venkataraman.

Their insightful questions and comments helped to shape this thesis and inspire many future

directions. I learned many things about systems from Klara and Jian’s lectures. Klara

encouraged me to switch to system research when I was admitted to a different program as a

master’s student. I would not be working on system research without her advice. Shivaram

and I have collaborated on both Chi and Cameo projects starting from 2017. Not only did

he provide invaluable feedback on the projects themself, but he has also been a great source

of advice, both research and career -wise. He is one of the first people I would turn to for

research feedbacks.

Throughout my Ph.D. journey, I am privileged to work with some of the best researchers

through internships. I want to thank Jun Li, Lucy Chekasova, Mijung Kim, Harris Volos,

Hernan Laffitte for hosting me at the internship in Hewlett Packard Enterprise (HPE) Lab.

At the early stage of my Ph.D. journey, Lucy was the first researcher who taught me how to

properly conduct a performance analysis on systems, while Jun and Mijung spent a signifi-

cant amount of time teaching me how to analyze performance implications behind different

configurations. Next, I would like to express my sincere gratitude to Rahul Potharaju and

Kai Zeng, who mentored me at Microsoft. Rahul was my manager at the internship. From

him, I learned how to distill interesting research ideas from in-production large-scale systems

and present the research ideas to a broader audience. Kai was the mentor for two of my

internships. Being the most hands-on mentor I’ve ever had, he taught me a full spectrum of

skills, from how to develop an interesting story for my paper, to how to properly optimize

every line of code. The success of this thesis would not be possible without them. Mean-

while, I would also like to thank members of Cloud and Information Services Lab (CISL) at

v

Microsoft, Carlo Curino, Matteo Interlandi, Alec Jindal, for their constructive feedback on

my project and inspiring lunchtime conversation.

Next, I would like to thank all my peers, both at University of Illinois at Urbana-

Champaign (UIUC) and at my internship, for supporting me throughout this journey.

Firstly, I would like to thank Muntasir Raihan Rahman and Mainak Ghosh for sharing

their wisdom as senior Ph.D. students and acting as my big brothers academically, and

Wenting Wang, Luke Leslie, Shadi Noghabi, Faria Kalim, Shegufta Ahsan, Cong Xie, Rui

Yang and Beomyeol Jeon for being geat friends through many of my ups and downs (mostly

paper rejections). We share the same goal as and I have learned so much from them. I’ll also

extend this appreciation to other graduate and undergraduate students who have worked

with Distributed Protocols Research Group (DPRG), for all the great times we spent to-

gether: Ala Alkhaldi, Hilfi Alkaff, Mayank Punidr, Jerry Peng, Son Nguyen, Guangxiang Du,

Shiv Verma, Sharanya Bathay, Richa Meherwal, Akshun Gupta, Pallavi Srivastava, Ashwini

Raina, Xiaoyao Qian, Jayasi Mehar, Srujun Gupta, Mayank Bhatt, and Harshit Agarwal.

Specifically, I would like to thank Wenting, Jerry, Faria, Sharanya, Richa, Mainak, Ashwini,

and Xiaoyao for collaborating on research projects included in this thesis. Additionally, I

would like to thank all friends I made during my internships: Pradeep Fernando, Moriz

Hoffman, Luo Mai, Joana Trindade, Yunseong Lee, Alberto Scolari, Chenggang Wu, Li Su,

Xiaoming Qin, and Zichao Zhang. It has been a privilege to work with you and a great joy to

spend summertime together. Specifically, I would like to thank Pradeep, Luo, Li, Xiaoming,

and Zichao for collaborating on my past projects. I’m grateful to Microsoft for continuing

to support my projects after my internship.

I began my undergraduate study at UIUC starting 2009, and I feel honored to be instructed

by many professors and instructors from the Computer Science Department. I would like

to thank Lawrance Angrave, who taught an excellent introductory CS course that made me

decide to switch to study computer science. I would also like to thank Professor Brighten

Godfrey, who introduced me to computer system research. His class was the first reason

that I became a researcher in computer systems. I’d also like to show my appreciation to

Professor Saurabh Sinha, Professor Roy Campbell, and Charles Blatti, who gave me the

freedom to explore my research interest and encouraged me to switch my research area to

distributed systems. During my study at UIUC, I’m grateful to receive tremendous help

from the department advisors and staff: Viveka Kudaligama, Kara MacGregor, Mary Beth

Kelly, Kathy Runk, and Maggie Chappell.

Finally, I would like to show my gratitude to my friends and family. I want to thank Silu

Huang, Yunhui Long, Mengjia Yan, Yi Zhang, Liqi Xu for all the Friday dinner gatherings,

weekend movie nights, and many road trips we had together. I’m indebted to my parents,

vi

Li Zhou and Hui Xu, for giving me everything they have. Getting a doctoral degree in the

United States was not something they had planned for me when I was little, but they chose

to support my decision anyway. I dedicate this thesis to them.

vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Background and Motivation . 1
1.2 Thesis Contributions . 3
1.3 Roadmap . 6

CHAPTER 2 STELA: ENABLING STREAM PROCESSING SYSTEMS TO
SCALE-IN AND SCALE-OUT ON-DEMAND . 7
2.1 Introduction . 7
2.2 Stela Policy and the ETP Metric . 9
2.3 Implementation . 16
2.4 Evaluation . 20
2.5 Related Work . 24
2.6 Conclusion . 26

CHAPTER 3 HENGE: INTENT-DRIVEN MULTI-TENANT STREAM PRO-
CESSING . 27
3.1 Introduction . 27
3.2 Overview of Henge . 28
3.3 Unifying User Requirements . 30
3.4 Juice as a Performance Indicator . 32
3.5 Evaluation . 33
3.6 Conclusion . 34

CHAPTER 4 POPULAR IS CHEAPER: CURTAILING MEMORY COSTS IN
INTERACTIVE ANALYTICS ENGINES. 36
4.1 Introduction . 36
4.2 The Replication Strategy . 37
4.3 Reducing Network Transfer through Matching 39
4.4 Dynamic Replication Comparing To Prior Approach 40
4.5 Conclusion . 42

CHAPTER 5 MOVE FAST AND MEET DEADLINES: FINE-GRAINED REAL-
TIME STREAM PROCESSING WITH CAMEO. 43
5.1 Introduction . 43
5.2 Background and Motivation . 45
5.3 Design Overview . 48
5.4 Scheduling Policies in Cameo . 49
5.5 Scheduling Mechanisms in Cameo . 54

viii

5.6 Experimental Evaluation . 60
5.7 Related Work . 69
5.8 Conclusion . 70

CHAPTER 6 SCHEDULING PERFORMANCE CRITICAL STATEFUL FUNC-
TIONS WITH DIRIGO . 71
6.1 Introduction . 71
6.2 Motivation . 72
6.3 Related Works . 74
6.4 Target Workloads . 75
6.5 Scheduler Design . 75
6.6 Scheduling Policies . 81
6.7 Evaluations . 87
6.8 Discussion . 101
6.9 Conclusion . 103

CHAPTER 7 CONCLUSION AND FUTURE WORK 104
7.1 Summary of Contributions . 104
7.2 Future Work . 105

REFERENCES . 108

ix

CHAPTER 1: INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

The past decade has seen the growth of real-time data processing [6], powered particularly

by the development of real-time data analytics systems, including stream processing systems

like [7, 8, 9, 10], and OLAP/real-time analytics systems like Druid [11, 12, 13, 14, 15].

These systems are widely adopted by companies to provide sub-second results based on

real-time data input [16, 17, 18, 19]. Many of these frameworks handle a variety of real-

time data processing workloads that can nowadays be characterized by 3Vs [20] — Volume,

Velocity, and Variety. Provisioning resources under such variability leads to unprecedented

challenges that have not been seen by their first-generation predecessors [21, 22, 23]. For

each application, its deployment strategy cannot be determined statically before launch

time and requires modification dynamically. Cloud platforms or services should elastically

adjust resource allocation based on the needs of the applications it hosts. How to adaptively

adjust resource allocation for various workloads becomes a major design decision for system

designers. Herbst, Kounev, and Reussner [24] formally define elasticity as the ability for

systems to automatically provision and de-provision resources to adapt to workload changes.

We focus on real-time data processing applications that are long-running and prone to the

disturbances caused by environmental changes during the application’s lifetime. For these

applications, the ability to be elastic is especially critical for systems to provide undisturbed

performance, correctness, and availability.

Thesis Statement: In this thesis, we show how achieving system elasticity can help systems

provide tunable performance under the dynamism of many environmental variables without

compromising resource efficiency. Specifically, we show that we could achieve elastic resource

provisioning for real-time data processing by new techniques that work at multiple stages of

resource provisioning at different layers of the cloud system stack.

We consider three environmental variables that affect job performance:

1. Job Specification: Job specification includes all characteristics describing the pro-

cessing logic of a job (or an application) and the data it consumes. The variability

in job specifications is one crucial factor that requires elastic adaptation from both

applications and systems. In our work, we consider three varying job specifications: i)

changing data volume over time, ii) various processing logic, and iii) changing number

of users.

Real-time data processing requires varying amounts of resources over time based on

1

the workload it is handling at the moment. For stream processing engines, the resource

required for a job or an operator during each unit of time depends on the rate of data

the application or the operator receives. This variability is further magnified by the

varying number of users sharing the cluster. For interactive data analytics engines, the

resource requirements vary with the number of queries it receives and the size of data

range each query accesses.

2. User Expectation: The heterogeneity of user expectations is another factor that

these systems should consider while performing elastic adaptation. User expectation in-

dicates the performance expectation or target set by the user for a job (or application1).

This factor is particularly dominant in resource provisioning for systems that handle

multi-tenant scenarios (e.g., a streaming processing system may host applications that

target users’ latency expectations while others target throughput expectations).

These expectations either become thresholds to trigger re-provisioning mechanisms

or become performance targets of scheduling strategies during execution. Providing

elastic resource provisioning towards each application introduces multiple challenges,

e.g., How to map different types of performance expectations (e.g., expected latency,

throughput, etc.) to resource needs? How to provide immediate resources to a running

job that receives data that targets a strict user expectation without resource over-

provisioning?

3. Available Resource: We also consider resources available to be another varying

constraint that requires adaptation. Users can choose to modify the cluster setting due

to changing workload expectations or budget changes. In our work, total resources

might be static or elastic. We consider scenarios such as changing cluster size or

clusters composed of machines with different configurations.

Steps of Elastic Resource Provisioning: Achieving resource provisioning elasticity for

real-time data processing applications typically requires systems to take the following steps:

1. Detecting and modeling available resources;

2. Translating user expectations to resource needs;

3. Performing corresponding scheduling actions, including

(a) Task placement

1We use job and application interchangeably.

2

(b) Task ordering

(c) Determining execution granularity

4. Interpreting scheduling feedback and determining future actions.

Each of these steps introduces many research challenges regarding both the policies and the

mechanisms for systems to achieve elasticity. We introduce four problems that we focused

on in our prior research.

1.2 THESIS CONTRIBUTIONS

Figure 1.1 illustrates the layer of the system stack where each work focuses. We list all

contributions of this thesis in this section:

Figure 1.1: Cloud stack layer each published work focuses on.

On-demand Elasticity For Data Stream: Scaling out and scaling in streaming applica-

tions during execution time is important for long-running, streaming processing applications.

As the data input to these applications is typically unpredictable in terms of speed and skew-

ness, resource needs for these applications also change after it is first deployed. Therefore,

these applications usually require constant monitoring and need to be scale-out to more

machines on-demand when not enough resources are provisioned, or vice versa. However,

existing distributed stream processing systems used in the industry largely lack the ability

to seamlessly and efficiently scale the number of servers on-demand. And most of the prior

3

approaches we have seen focused on scale-out elastically (or -in) automatically without a

restriction on the post-scale resource setting [25, 26, 27, 28, 29, 30] (e.g., not limiting the

number of machines the applications can scale out to). In our work, Stela [1], built on

Storm [7], we focus specifically on the selection and placement of scale-out (or scale-in) op-

erators during an on-demand scale-out (or scale-in) to maximize post-scale throughput and

minimize intrusion to the running application.

Workload Adaptation Under Various User Expectations: In Stela, we focused on

elastic scale-in or scale-out towards a single data stream application. In the next work,

Henge [2], we broaden our scenario to multi-tenant settings. Multi-tenant deployment in

stream processing systems (i.e., multiple streaming applications share a single cluster) is

a powerful technique to reduce resource consumption. However, näıve resource sharing in

a streaming engine results in unpredictable behavior. This is because most real-time data

processing engines today do not provide native performance isolation. In Henge, we provide

a scheduling solution, built on top of Storm that supports cluster sharing among jobs with

different types of user expectations. Henge defines job intent — a metric that measures the

effectiveness of a certain application that satisfies its user-defined SLO. Henge uses job intent

to identify jobs that require extra resources to achieve their expectations and jobs that can

occupy under-utilized resources that can potentially scale in. Then it uses its reconfiguration

mechanism to improve the overall success rate of achieving job intent across all applications

sharing the cluster.

Adaptive Replication Under Skewed Popularity Access Pattern: In both Stela and

Henge, we did not make any assumptions on input data’s ingestion pattern (in terms of vol-

ume and locality). In this work, we leverage the skewed ingestion pattern observed from the

production trace [31] and develop a data-popularity-aware replication strategy. Getafix [3]

focuses on both shortening query makespan and memory consumption for interactive data

analytics engines. It performs online data replication and placement based on a statically

optimal strategy and adaptive to access pattern changes during run time.

Data-driven, Fine-grained Operator Scheduling: Today’s most popular stream pro-

cessing engines use a “slot-based” approach to achieve job-level and operator-level isola-

tion and rely on users to manually configure the number of resources provisioned through

resource managers [32, 33, 34]. Here slot-based approach means operators are assigned

isolated resources. Without system elasticity, this deployment strategy results in severe

over-provisioning as users typically estimate resource need based on workload peaks to

avoid congestion. As we have discovered in Henge, existing solutions that aim to rem-

edy this issue are largely application-centric — the platform generally assumes achieving

performance expectations is part of applications or users’ responsibility. Therefore, prior

4

solutions that have been proposed to solve this issue [35, 36, 37, 38, 39, 40] largely in-

volve online reconfiguration for running pipelines. In these works, underlying engines are

assumed to be black boxes that provide performance metrics, while users utilize these met-

rics to generate diagnoses [1, 36, 37, 38, 39, 41, 42, 43] that triggers pipeline reconfigura-

tion [17, 44, 45, 46, 47, 48, 49, 50, 51]. In Cameo [4], we change our perspective and question

the design of the execution model of existing stream processing engines. Cameo is a sched-

uler designed for stream processing engines that schedules each operator execution based on

data to be processed.

Scheduling Real-time Dataflow Stateful Functions: We envision that we should build

future real-time data processing engines with an event-driven, serverless architecture. All

real-time data processing pipelines should be mapped to a chain of serverless functions.

Building an event-driven service for real-time data processing applications requires fine-

grained operator scheduling with the awareness of performance requirements and applica-

tions processing semantics. In Cameo [4], we explore the benefit of priority-based scheduling

within a machine by building a scheduler for real-time dataflow operators. In Dirigo, we

further explore this vision by building an event-driven scheduling framework that allows

transparent reallocation of functions and runtime-managed function state storage. We ex-

plore several scheduling philosophies and how well they can support performance constraints

and functions with various state accesses.

Achieving resource provisioning elasticity for real-time data processing introduces many

research challenges regarding the policies and the techniques for systems to achieve elasticity.

We argue that these research challenges occur during the following four steps:

• 1 Detecting and modeling available resources;

• 2 Translating user expectations to resource needs;

• 3 Performing corresponding scheduling actions, including

• a. Task placement

• b. Task ordering

• c. Determining execution granularity

• 4 Interpreting scheduling feedback and determining future actions.

We map existing works into the types of environmental variability discussed by each, as

well as the particular stages of resource provisioning each of these works contributed to in

Table 1.2.

5

Name Environmental Variability Stages of Resource Provisioning

Stela Resource Available, Workload Specification 1 , 3 a, 3 b, 4

Henge User Expectation, Workload Specification 2 , 3 c, 4

Getafix Resource Available, Workload Specification 1 , 3 a, 4

Cameo User Expectation, Workload Specification 2 , 3 b, 3 c

Dirigo User Expectation, Resource Available 1 , 3 a, 3 b, 3 c

Figure 1.2: List of past works, each mapped to the types of environmental variability discussed
by the work, and stages of provisioning process targeted by each solution.

1.3 ROADMAP

Chapter 2 describes Stela and ETP metrics and their on-demand scale-out and scale-in

mechanisms in detail. Chapter 3 describes Henge and its Juice metrics and techniques to

unify user requirements by translating topology utility. Chapter 4 introduces Getafix and

its ModifiedBestFit algorithm to bin-pack and replicate data segments. Chapter 5 de-

scribes the Cameo framework and its technique to perform priority-based scheduling based

on user-specified requirements. Chapter 6 presents the architecture and scheduling poli-

cies we explore through Dirigo. We conclude this thesis and introduce future directions in

Chapter 7.

6

CHAPTER 2: STELA: ENABLING STREAM PROCESSING SYSTEMS TO
SCALE-IN AND SCALE-OUT ON-DEMAND

2.1 INTRODUCTION

As our society enters an age dominated by digital data, we have seen unprecedented levels

of data in terms of volume, velocity, and variety. Processing huge volumes of high-velocity

data in a timely fashion has become a major demand. According to a recent article by BBC

News [52], in the year 2012, 2.5 Exabytes of data was generated everyday, and 75% of this

data is unstructured. The volume of data is projected to grow rapidly over the next few

years with the continued penetration of new devices such as smartphones, tablets, virtual

reality sets, wearable devices, etc.

In the past decade, distributed batch computation systems like Hadoop [53] and others

[54][55][56][57] have been widely used and deployed to handle big data. Customers want to

use a framework that can process large dynamic streams of data on the fly and serve results

with high throughput. For instance, Yahoo! uses a stream processing engine to perform

for its advertisement pipeline processing, so that it can monitor ad campaigns in real-time.

Twitter uses a similar engine to compute trending topics [58] in real time.

To meet this demand, several new stream processing engines have been developed recently,

and are widely in use in industry, e.g., Storm [58], System S [29], Spark Streaming [10], and

others [59][27][60]. Apache Storm is the most popular among these. A Storm application

uses a directed graph (dataflow) of operators (called “bolts”) that runs user-defined code to

process the streaming data.

Unfortunately, these new stream processing systems used in industry largely lack an ability

to seamlessly and efficiently scale the number of servers in an on-demand manner. On-

demand means that the scaling is performed when the user (or some adaptive program)

requests to increase or decrease the number of servers in the application Today, Storm

supports an on-demand scaling request by simply unassigning all processing operators and

then reassigning them in a round robin fashion to the new set of machines. This is not

seamless as it interrupts the ongoing computation for a long duration. It is not efficient either

as it results in sub-optimal throughput after the scaling is completed (as our experiments

show later).

Scaling-out and -in are critical tools for customers. For instance, a user might start

running a stream processing application with a given number of servers, but if the incoming

data rate rises or if there is a need to increase the processing throughput, the user may

wish to add a few more servers (scale-out) to the stream processing application. On the

7

other hand, if the application is currently under-utilizing servers, then the user may want

to remove some servers (scale-in) in order to reduce dollar cost (e.g., if the servers are VMs

in AWS [61]). Supporting on-demand scale-out is preferable compared to over-provisioning

which uses more resources (and money in AWS deployments), while on-demand scale-in is

preferable to under-provisioning.

On-demand scaling operations should meet two goals: 1) the post-scaling throughput

(tuples per sec) should be optimized and, 2) the interruption to the ongoing computation

(while the scaling operation is being carried out) should be minimized. We present a new

system, named Stela (STream processing ELAsticity), that meets these two goals. For scale-

out, Stela carefully selects which operators (inside the application) are given more resources,

and does so with minimal intrusion. Similarly, for scale-in, Stela carefully selects which

machine(s) to remove in a way that minimizes the overall detriment to the application’s

performance.

To select the best operators to give more resources when scaling-out, Stela uses a new

metric called ETP (Effective Throughput Percentage). The key intuition behind ETP is to

capture those operators (e.g., bolts and spouts in Storm) that are both: i) congested, i.e., are

being overburdened with incoming tuples, and ii) affect throughput the most because they

reach a large number of sink operators. For scale-in, we also use an ETP-based approach to

decide which machine(s) to remove and where to migrate operator(s).

The ETP metric is both hardware- and application- agnostic. Thus Stela neither needs

hardware profiling (which can be intrusive and inaccurate) nor knowledge of application

code.

Existing work on elasticity in System S [25][26], StreamCloud (elasticity in Borealis) [49],

Stormy [60] and [37] propose the use of metrics such as the congestion index, throughput,

CPU, latency or network usage, etc. These metrics are used in a closed feedback loop, e.g.,

under congestion, System S determines when the parallelism (number of instances of an

operator) should increase, and then does so for all congested operators. This is realistic only

when infinite resources are available. Stela assumes finite resources (fixed number of added

machines or removed machines, as specified by the user), and thus has to solve not only the

“when” problem, but also the harder problem of deciding which operators need to get/lose

resources. We compare Stela against the closest-related elasticity techniques from literature,

i.e., [62].

The design of Stela is generic to any data flow system (Section 2.2.1). For concreteness, we

integrated Stela into Apache Storm. We present experimental results using micro-benchmark

Storm applications, as well as production applications from industry (Yahoo! Inc. and IBM

[25]). Our experiments show that Stela’s scale-out operation reduces interruption time to

8

a fraction as low as 12.5% that of Storm and achieves throughput that is about 21-120%

higher than Storm’s. Stela’s scale-in operation performs 2X-5X better than Storm’s default

strategy. We believe our metric can be applied to other systems as well.

The contributions of our work are: 1) development of the novel metric, ETP, that captures

the “importance” of an operator, 2) to the best of knowledge, this is the first work to describe

and implement on-demand elasticity within Storm, and 3) evaluation of our system on both

micro-benchmark applications and on applications used in production.

2.2 STELA POLICY AND THE ETP METRIC

In this section, we first define our data stream processing model. Then, we focus on Stela

scale-out and how it uses the ETP metric. Finally we discuss scale-in.

2.2.1 Data Stream Processing Model and Assumptions

In this paper, we target distributed data stream processing systems that represent each

application as a directed acyclic graph (DAG) of operators. An operator is a user-defined

logical processing unit that receives one or more streams of tuples, processes each tuple, and

outputs one or more streams of tuples. We assume operators are stateless. We assume that

tuple sizes and processing rates follow an ergodic distribution. These assumptions hold true

for most Storm topologies used in industry. An example of this model is shown in Figure 2.1.

Operators that have no parents are sources of data injection, e.g., 1. They may read from

a Web crawler. Operators with no children are sinks, e.g., 6. The intermediate operators

(e.g., 2-5) perform processing of tuples. Each sink outputs data (e.g., to a GUI or database),

and the application throughput is the sum of throughputs of all sinks in the application. An

application may have multiple sources and sinks.

An instance (of an operator) is an instantiation of the operator’s processing logic and is

the physical entity that executes the operator’s logic. The number of instances is correlated

with the operator’s parallelism level. For example, in Storm, these instances are called

“executors” (Section 2.3.1).

2.2.2 Stela: Scale-Out Overview

In this section, we give an overview of how Stela supports scale-out. When the user

requests a scale-out with a given number of new machines Stela needs to decide which

operators to give more resources to, by increasing their parallelism.

9

Figure 2.1: An Example Of Data Stream Pro-
cessing Application.

Stela first identifies operators that are

congested based on their input and output

rates. Then it calculates a per-operator met-

ric called Expected Throughput Percentage

(ETP). ETP takes the topology into ac-

count: it captures the percentage of total 1

application throughput (across all sinks)

that the operator has direct impact on, but

ignores all down-stream paths in the topol-

ogy that are already congested. This ensures

that giving more resources to a congested

operator with higher ETP will improve the

effect on overall application throughput. Thus Stela increases the parallelism of that op-

erator with the highest ETP (from among those congested). Finally Stela recalculates the

updated execution speed and Projected ETP (given the latest scale-out) for all operators

and selects the next operator to increase its parallelism, and iterates this process. To ensure

load balance, the total number of such iterations equals the number of new machines added

times average number of instances per machine pre-scale. We determine the number of in-

stances to allocate a new machine as: Ninstances = (Total # ofinstances)/(# of machines),

in other words Ninstances is the average number of instances per machine prior to scale-out.

This ensures load balance post-scale-out. The schedule of operators on existing machines is

left unchanged.

The ETP approach is essentially a greedy approach because it assigns resources to the

highest ETP operator in each iteration. Other complex approaches to elasticity may be

possible, including graph theory and max-flow techniques–however these do not exist in

literature yet and would be non-trivial to design. While we consider these to be interesting

directions, they are beyond the scope of this paper.

2.2.3 Congested Operators

Before calculating ETP for each operator, Stela determines all congested operators in the

graph by calling a CONGESTIONDETECTION procedure. This procedure considers an

operator to be congested if the combined speed of its input streams is much higher than the

speed at which the input streams are being processed within the operator. Stela measures

the input rate, processing rate and output rate of an operator as the sum of input rates,

1This can also be generalized to a weighted sum of throughput across sinks.

10

processing rates and output rates, respectively, across all instances of that operator. An

application may have multiple congested operators. In order to determine the best operators

that should be migrated during a cluster scaling operation, Stela quantifies the impact of

scaling an operator towards the application overall throughput by using the ETP metric.

Stela continuously samples the input rate, emit rate and processing rate of each operator

in the processing the topology respectively. The input rate of an operator is calculated as

the sum of emit rate towards this operator from all its parents. Stela uses periodic collection

every 10 seconds and calculates these rates in a sliding window of recent tuples (of size 20

tuples). These values are chosen based on Storm’s default and suggested values, e.g., the

Storm scheduler by default runs every 10s.

When the ratio of input to processing exceeds a threshold CongestionRate, we consider

that operator to be congested. An operator may be congested because it’s overloaded by

too many tuples, or has inefficient resources, etc. When the operator’s input rate equals

its processing rate, it is not considered to be congested. Note that we only compare input

rates and processing rates (not emit rates) – thus this applies to operators like filter, etc.,

which may output a different rate than the input rate. The CongestionRate parameter can

be tuned as needed and it controls the sensitivity of the algorithm: lower CongestionRate

values result in more congested operators being captured. For Stela experiments, we set

CongestionRate to be 1.2.

2.2.4 Effective Throughput Percentage (ETP)

Effective Throughput Percentage (ETP): To estimate the impact of each operator to-

wards the application throughput, Stela introduces a new metric called Effective Throughput

Percentage (ETP). An operator’s ETP is defined as the percentage of the final throughput

that would be affected if the operator’s processing speed were changed.

The ETP of an operator o is computed as in Equation 2.1:

ETPo =
ThroughputEffectiveReachableSinks

Throughputworkflow

(2.1)

Here, ThroughputEffectiveReachableSinks denotes the sum of throughput of all sinks reachable

from o by at least one un-congested path, i.e., a path consisting only of operators that are

not classified as congested. Throughputworkflow denotes the sum throughput of all sink

operators of the entire application. The algorithm to calculate an operator’s ETP is shown

in Algorithm 2.1. This algorithm does a depth first search throughout the application DAG,

and calculates ETPs via a post-order traversal. ProcessingRateMap stores processing rates

of all operators. Note that if an operator o has multiple parents, then the effect of o’s ETP

11

Figure 2.2: A sliver of a stream processing application. Each operator is denoted by its
input/execution speed. Shaded operators are congested. CongestionRate=1.

is the same at each of its parents (i.e. it is replicated, not split).

While ETP is not a perfect measurement of post-scaling performance, it provides a good

estimate. Our results in Section 4 show that using ETP is a reasonable and practical

approach.

Algorithm 2.1 Find ETP of an operator o of the application

1: function FindETP(ProcessingRateMap)

2: if o.child = null then return ProcessingRateMap.get(o)/ThroughputSum . o is

a sink

3: SubtreeSum← 0;

4: for each descendant child ∈ o do

5: if child.congested = true then

6: continue; . if the child is congested, give up the subtree rooted at that child

7: else

8: SubtreeSum+ = FindETP(child);

return SubtreeSum

ETP Calculation Example and Intuition: We illustrate the ETP calculation using

the example application in Figure 2.2. The processing rate of each operator is shown. In

Figure 2.2, the operators congested are shown as shaded, i.e. operators 1, 3, 4 and 6. The

total throughput of the workflow is calculated as the sum of throughput of sink operators 4,

7, 8, 9 and 10 as Throughputworkflow=4500 tuples/s.

Let us calculate the ETP of operator 3. Its reachable sink operators are 7, 8, 9 and 10.

12

Of these only 7 and 8 are considered to be the “effectively” reachable sink operators, as

they are both reachable via an un-congested path. Thus, increasing the speed of operator

3 will improve the throughput of operators 7 and 8. However, operator 6 is a non-effective

reachable for operator 3, because operator 6 is already congested – thus increasing operator

3’s resources will only increase operator 6’s input rate and make operator 6 further congested,

without improving its processing rate. Thus, we ignore the subtree of operator 6 when

calculating 3’s ETP. The ETP of operator 3 is: ETP3 = (1000 + 1000)/4500 = 44%.

Similarly, for operator 1, the sink operators 4, 7, 8, 9 and 10 are reachable, but none of

them are reachable via a non-congested path. Thus the ETP of operator 1 is 0. Likewise,

we can calculate the ETP of operator 4 as 44% and the ETP of operator 6 as 11%. Thus,

the priority order for Stela to assign resources to these operators is: 3, 4, 6, 1.

2.2.5 Iterative Assignment and Intuition

During each iteration, Stela calculates the ETP for all congested operators. Stela targets

the operator with the highest ETP and it increases the parallelism of the operator by as-

signing a new instance of that operator at the newly added machine. If multiple machines

are being added, then the target machine is chosen in round-robin manner. Overall this

algorithm runs Ninstances iterations to select Ninstances target operators (Section 2.2.1 showed

how to calculate Ninstances).

Algorithm 2.2 depicts the pseudocode for scale-out. In each iteration, Stela constructs a

CongestedMap, as explained earlier in Section 2.2.3. If there are no congested operators

in the application, Stela chooses a source operator as a target – this is done to increase

the input rate of the entire application. If congested operators do exist, for each congested

operator, Stela finds its ETP using the algorithm discussed in Section 2.2.4. The result

is sorted into ETPMap. Stela chooses the operator that has the highest ETP value from

ETPMap as a target for the current iteration. It increases the parallelism of this operator

by assigning one additional random instance to it, on one of the new machines in a round

robin manner.

For the next iteration, Stela estimates the processing rate of the previously targeted op-

erator o proportionally, i.e., if the o previously had an output rate E and k instances, then

o’s new projected processing rate is E · k+1
k

. This is a reasonable approach since all machines

have the same number of instances and thus proportionality holds. Note that even though

this may not be accurate, we find that it works in practice. Then Stela uses this to update

the output rate for o, and the input rates for o’s children (o’s children’s processing rates

do not need updates as their resources remain unchanged. The same applies to o’s grand-

13

descendants.). Stela updates emit rate of target operator in the same manner to ensure

estimated operator submission rate can be applied.

Once this is done, Stela re-calculates the ETP of all operators by again using Algorithm 2.1

– we call these new ETPs as projected ETPs, or PETPs, because they are based on estimates.

The PETPs are used as ETPs for the next iteration. These iterations are repeated until all

available instance slots at the new machines are filled. Once this procedure is completed,

the schedule is committed by starting the appropriate executors on new instances.

Algorithm 2.2 Stela: Scale-out

1: function Scale-out
2: slot← 0;
3: while slot < Ninstances do
4: CongestedMap← CongestionDetection;
5: if CongestedMap.empty == true then

return source; . none of the operators are congested

6: for each operator o ∈ workflow do
7: ETPMap← FindETP(Operator o);

8: target← ETPMap.max;
9: ProcessingRateMap.update(target);

10: EmitRateMap.update(target); . update the target execution rate
11: slot+ +;

In Algorithm 2.2, procedure FindETP involves searching for all reachable sinks for every

congested operator – as a result each iteration of Stela has a running time complexity of

O(n2) where n is the number of operators in the workflow. The entire algorithm has a

running time complexity of O(m · n2), where m is the number of new instance slots at the

new workers.

2.2.6 Stela: Scale-In

For scale-in, we assume the user only specifies the number of machines to be removed and

Stela picks the “best” machines from the cluster to remove (if the user specifies the exact

machines to remove, the problem is no longer challenging). We describe how techniques used

for scale-out can also be for scale-in, particularly, the ETP metric. For scale-in we will not

be merely calculating the ETP per operator but instead per machine in the cluster. That

is, we first, calculate the ETPSum for each machine as in Equation 2.2:

ETPSum(machinek) =
n∑

i=1

FindETP (FindComp(τi)) (2.2)

14

ETPSum for a machine is the sum of all ETP of instances of all operators that currently

reside on the machine. Thus, for every instance, τi, we first find the operator that instance

τi is an instance of (e.g., operatoro) and then find the ETP of that operatoro. Then, we sum

all of these ETPs. ETPSum of a machine is thus an indication of how much the instances

executing on that machine contribute to the overall throughput. The intuition is that a

machine with lower ETPSum is a better candidate to be removed in a scale-in operation

than a machine with higher ETPSum since the former influences less the application in both

throughput and downtime.

Algorithm 2.3 Stela: Scale-in

1: function Scale-in
2: for each Machine n ∈ cluster do
3: ETPMachineMap← ETPMachineSum(n)

4: ETPMachineMap.sort() . sort ETPSums by increasing order
5: RemoveMachine(ETPMachineMap.first())

6: function RemoveMachine(Machine n, ETPMachineMap map)
7: for each instance τi on n do
8: if i > map.size then
9: i← 0

10: Machine x← map.get(i)
11: Assign(τi, x) . assigns instances to a round robin fashion
12: i+ +

The SCALE-IN procedure of Algorithm 2.3 is called iteratively, as many times as the

number of machines requested to be removed. The procedure calculates the ETPSum for

every machine in the cluster and puts the machine and its corresponding ETPSum into the

ETPMachineMap. The ETPMachineMap is sorted in increasing order of ETPSum values.

The machine with the lowest ETPSum will be the target machine to be removed in this

round of scale-in. Operators from the machine that is chosen to be removed are re-assigned

to the remaining machines in the cluster, in a round robin fashion in increasing order of their

ETPSum.

Performing operator migration to machines with lower ETPSum will have less of an effect

on the overall performance since machines with lower ETPSum contribute less to the overall

performance. This also helps shorten the amount of downtime the application experiences

due to the rescheduling. This is because while adding new instances to a machine, existing

computation may need to be paused for a certain duration. Instances on a machine with

lower ETPSum contribute less to the overall performance and thus this approach causes

lower overall downtime.

15

After this schedule is created, Stela commits it by migrating operators from the selected

machines, and then releases these machines. Algorithm 2.3 involves sorting ETPSum, which

results in a running time complexity of O(nlog(n)).

2.3 IMPLEMENTATION

We have implemented Stela as a custom scheduler inside Apache Storm [58].

2.3.1 Overview of Apache Storm

Storm Application: Apache Storm is a distributed real time processing framework that

can process incoming live data [58]. In Storm, a programmer codes an application as a Storm

topology, which is a graph, typically a DAG (While Storm topologies allow cycles, they are

rare and we do not consider them in this paper.), of operators, sources (called spouts), and

sinks. The operators in Storm are called bolts. The streams of data that flow between two

adjacent bolts are composed of tuples. A Storm task is an instantiation of a spout or bolt.

Users can specify a parallelism hint to say how many executors each bolt or spout should

be parallelized into. Users can also specify the number of tasks for the bolt or spout – if they

don’t, Storm assumes one task per executor. Once fixed, Storm does not allow the number

of tasks for a bolt to be changed, though the number of executors is allowed to change,

to allow multiplexing – in fact Stela leverages this multiplexing by varying the number of

executors for congested bolts.

Storm uses worker processes. In our experiments, a machine may contain up to 4 worker

processes. Worker processes in turn contain executors (equivalent to an “instance” in our

model in Section 2.2.1). An executor is a thread that is spawned in a worker process. An

executor may execute one or more tasks. If an executor has more than one task, the tasks are

executed in a sequential manner inside. The number of tasks cannot be changed in Storm,

but the number of executors executing the tasks can increase and decrease.

The user specifies in a topology (equivalent to a DAG) the bolts, the connections, and how

many worker processes to use. The basic Storm operator, namely the bolt, consumes input

streams from its parent spouts and bolts, performs processing on received data, and emits

new streams to be received and processed downstream. Bolts may filter tuples, perform

aggregations, carry out joins, query databases, and in general any user defined functions.

Multiple bolts can work together to compute complex stream transformations that may

require multiple steps, like computing a stream of trending topics in tweets from Twitter

[58]. Bolts in Storm are stateless. Vertices 2-6 in Figure 2.1 are examples of Bolts.

16

Figure 2.3: Stela Architecture.

Storm Infrastructure: A typical Storm Cluster has two types of machines: the master

node, and multiple workers nodes. The master node is responsible for scheduling tasks among

worker nodes. The master node runs a daemon called Nimbus. Nimbus communicates and

coordinates with Zookeeper[63] to maintain a consistent list of active worker nodes and to

detect failure in the membership.

Each server runs a worker node, which in turn runs a daemon called the supervisor. The

supervisor continually listens for the master node to assign it tasks to execute. Each worker

machine contains many worker processes which are the actual containers for tasks to be

executed. Nimbus can assign any task to any worker process on a worker node. Each source

(spout) and operator (bolt) in a Storm topology can be parallelized to potentially improve

throughput. The user specifies the parallelization hint for each bolt and spout.

Storm Scheduler: Storm’s default Storm scheduler (inside Nimbus) places tasks of all

bolts and spouts on worker processes. Storm uses a round robin allocation in order to

balance out load. However, this may result in tasks of one spout or bolt being placed at

different workers. Currently, the only method for vanilla Storm to do any sort of scale-in or

-out operation, is for the user to execute a re-balance operation. This re-balance operation

simply deletes the current scheduling and re-schedules all tasks from scratch in a round robin

fashion to the modified cluster. This is inefficient, as our experiments later show.

2.3.2 Core Architecture

Stela runs as a custom scheduler in a Java class that implements a predefined IScheduler

interface in Storm. A user can specify which scheduler to use in a YAML formated con-

figuration file call storm.yaml. Our scheduler runs as part of the Storm Nimbus daemon.

The architecture of Stela’s implementation in Storm is visually presented in Figure 2.3. It

consists of three modules:

17

1. StatisticServer - This module is responsible for collecting statistics in the Storm cluster,

e.g., throughput at each task, bolt, and for the topology. This data is used as input to

congestion detection in Sections.

2. GlobalState - This module stores important state information regarding the scheduling

and performance of a Storm Cluster. It holds information about where each task is

placed in the cluster. It also stores statistics like sampled throughputs of incoming

and outgoing traffic for each bolt for a specific duration, and this is used to determine

congested operators as mentioned in Section 2.2.3.

3. Strategy - This module provides an interface for scale-out strategies to implement so

that different strategies (e.g., Algorithm 2.2) can be easily swapped in and out for

evaluation purposes. This module calculates a new schedule based on the scale-in

or scale-out strategy in use and uses information from the Statistics and GlobalState

modules. The core Stela policy (Section 2.2.1) and alternative strategies (Section 2.3.3)

are implemented here.

4. ElasticityScheduler - This module is the custom scheduler that implements IScheduler

interface. This class starts the StatisticServer and GlobalState modules, and invokes

the Strategy module when needed.

When a scale-in or -out signal is sent by the user to the ElasticityScheduler, a procedure

is invoked that detects newly joined machines based on previous membership. The Elastic-

ityScheduler invokes the Strategy module, which calculates the entire new scheduling, e.g.,

for scale-out, it decides all newly created executors that need to be assigned to newly joined

machines. The new scheduling is then returned to the ElasticityScheduler which atomi-

cally (at the commit point) changes the current scheduling in the cluster. Computation is

thereafter resumed.

Fault-tolerance: When no scaling is occurring, failures are handled the same way as

in Storm, i.e., Stela inherits Storm’s fault-tolerance. If a failure occurs during a scaling

operation, Stela’s scaling will need to be aborted and restarted. If the scaling is already

committed, failures are handled as in Storm.

2.3.3 Alternative Strategies

Initially, before we settled on the ETP design in Section 2.2, we attempted to design

several alternative topology-aware strategies for scaling out. We describe these below, and

18

we will compare the ETP-based approach against the best of these in our experiments in

Section 2.4. One of these strategies also captures existing work [62].

Topology-aware strategies migrate existing executors instead of creating more of them (as

Stela does). These strategies aim to find “important” components/operators in a Storm

Topology. Operators, in scale-out, deemed “important” are given priority for migration to

the new worker nodes. These strategies are:

• Distance from spout(s) - In this strategy, we prioritize operators that are closer to the

source of information as defined in Section 2.2.1. The rationale for this method is that

if an operator that is more upstream is a bottleneck, it will affect the performance of

all bolts that are further downstream.

• Distance to output bolt(s) - Here, higher priority for use of new resources are given to

bolts that are closer to the sink or output bolt. The logic here is that bolts connected

near the sink affect the throughput the most.

• Number of descendants - Here, importance is given to bolts with many descendants

(children, children’s children, and so on) because such bolts with more descendants

potentially have a larger effect on the overall application throughput.

• Centrality - Here, higher priority is given to bolts that have a higher number of in-

and out-edges adjacent to them (summed up). The intuition is that “well-connected”

bolts have a bigger impact on the performance of the system then less well-connected

bolts.

• Link Load - In this strategy, higher priority is given to bolts based on the load of

incoming and outgoing traffic. This strategy examines the load of links between bolts

and migrates bolts based on the status of the load on those links. Similar strategies

have been used in [62] to improve Storm’s performance. We implemented two strategies

for evaluation: Least Link Load and Most Link Load. Least Link Load strategy sorts

executors by the load of the links that it is connected to and starts migrating tasks to

new workers by attempting to maximize the number of adjacent bolts that are on the

same server. The Most Link Load strategy does the reverse.

During our experiments, we found that all the above strategies performed comparably

for most topologies, however the Link Load based strategy was the only one that improved

performance for the Linear topology. Thus, the Least Link Load based strategy is repre-

sentative of strategies that attempt to minimize the network flow volume in the topology

19

Toplogy
Type

of tasks
per Com-
ponent

Initial #
of Execu-
tors per
Compo-
nent

of
Worker
Processes

Initial
Cluster
Size

Cluster
Size after
Scaling

Machine
Type

Star 4 2 12 4 5 1
Linear 12 6 24 6 7 1
Diamond 8 4 24 6 7 1
Page Load 8 4 28 7 8 1
Processing 8 4 32 8 9 1
Network 8 4 32 8 9 2
Page Load
Scale-in

15 15 32 8 4 1

Table 2.1: Experiment Settings and Configurations.

(a) Star Topology. (b) Linear Topology. (c) Diamond Topology.

Figure 2.4: Scale-out: Throughput Behavior for Micro-benchmark Topologies. (Window size
10 seconds)

schedule. Hence in the next section, we will compare the performance of the Least Link

Load based strategy with Stela. This is thus a comparison of Stela against [62].

2.4 EVALUATION

Our evaluation is two-pronged, and consists of both microbenchmark topologies and real

topologies (including two from Yahoo!). We adopt this approach due to the absence of

standard benchmark suites (like TPC-H or YCSB) for stream processing systems. Our mi-

crobenchmarks include small topologies such as star, linear and diamond, because we believe

that most realistic topologies will be a combination of these. We also use two topologies

from Yahoo! Inc., which we call PageLoad topology and Processing topology, as well as a

Network Monitoring topology [25] . We also present a comparison among Stela, the Link

Load Strategy (Section 2.3.3 and [62]), and Storm’s default scheduler (which is state of the

art).

20

2.4.1 Experimental Setup

For our evaluation, we used two types of machines from Emulab [64] testbed to perform our

experiments. Our typical Emulab setup consists of a number of machines running Ubuntu

12.04 LTS images, connected via a 100Mpbs VLAN. A type 1 machine has one 3 GHz

processor, 2 GB of memory, and 10,000 RPM 146 GB SCSI disks. A type 2 machine has

one 2.4 GHz quad core processor, 12 GB of memory, 750 GB SATA disks. The settings for

all topologies tested are listed in Table 2.1. For each topology, the same scaling operations

were applied to all strategies.

2.4.2 Micro-benchmark Experiments

Storm topologies can be arbitrary. To capture this, we created three micro-topologies that

commonly appear as building blocks for larger topologies. They are:

• Linear - This topology has 1 source and 1 sink with a sequence of intermediate bolts.

• Diamond - This topology has 1 source and 1 sink, connected parallel via several inter-

mediate bolts (Thus tuples will be processed via the path of “source - bolt - sink”.

• Star - This topology has multiple sources connected to multiple sinks via a single

unique intermediate bolt.

Figure 2.4a, 2.4b, 2.4c present the throughput results for these topologies. For the Star,

Linear, and Diamond topologies we observe that Stela’s post scale-out throughput is around

65%, 45%, 120% better than that of Storm’s default scheduler, respectively. This indicates

that Stela correctly identifies the congested bolts and paths and prioritizes the right set of

bolts to scale out. The lowest improvement is for the Linear topology (45%) – this lower

improvement is due to the limited diversity of paths, where even a single congested bolt can

bottleneck the sink.

In fact, for Linear and Diamond topologies, Storm’s default scheduler does not improve

throughput after scale-out. This is because Storm’s default scheduler does not increase

the number of executors, but attempts to migrate executors to a new machine. When an

executor is not resource-constrained and it is executing at maximum performance, migration

doesn’t resolve the bottleneck.

2.4.3 Yahoo Storm Topologies and Network Monitoring Topology

We obtained the layouts of two topologies in use at Yahoo! Inc. We refer to these two

topologies as the Page Load topology and Processing topology (these are not the original

21

names of these topologies). The layout of the Page Load Topology is displayed in Figure 2.5a,

the layout of the Processing topology is displayed in Figure 2.5b and the layout of the

Network Monitoring topology is displayed in Figure 2.5c.

(a) Layout of Page Load Topol-
ogy.

(b) Layout of Processing Topol-
ogy.

(c) Layout of Network Topology
[25].

Figure 2.5: Two Yahoo! Topologies and a Network Monitoring Topology derived from [25]

(a) Page Load topology. (b) Processing topology.
(c) Network Monitoring topol-
ogy.

Figure 2.6: Scale-out: Throughput Behavior for Yahoo! Topologies and Network Monitoring
Topology. (Window size 10 seconds)

We examine the performance of three scale-out strategies: default, Link based (Section

2.3.3 and [62]), and Stela. The throughput results are shown in Figure 2.6. Recall that link

load based strategies reduce the network latency of the workflow by co-locating communi-

cating tasks to the same machine.

From Figure 2.6, we observe that Stela improves the throughput by 80% after a scale-

out for both Yahoo topologies. In comparison, Least Link Load strategy barely improves

the throughput after a scale-out because migrating tasks that are not resource-constrained

will not significantly improve performance. The default scheduler actually decreases the

throughput after the scale-out, since it simply unassigns all executors and reassigns all the

executors in a round robin fashion to all machines including the new ones. This may cause

machines with “heavier” bolts to be overloaded thus creating newer bottlenecks that are

damaging to performance especially for topologies with a linear structure. In comparison,

Stela’s post-scaling throughput is about 125% better than Storm’s post-scaling throughput

22

for both Page Load and Processing topologies – this indicates that Stela is able to find the

most congested bolts and paths and give them more resources.

In addition to the above two topologies, we also looked at a published application from

IBM [25], and we wrote from scratch a similar Storm topology (shown in Figure 2.5c). By

increasing cluster size from 8 to 9, our experiment (Figure 2.6c) shows that Stela improves

the throughput by 21% by choosing to parallelize the congested operator closest to the sink.

In the meantime Storm default scheduler does not improve post scale throughput and Least

Link Load strategy decreases system throughput.

2.4.4 Convergence Time

We measure interruption to ongoing computation by measuring the convergence time. The

convergence time is the duration of time between when the scale-out operation starts and

when the overall throughput of the Storm Topology stabilizes. Concretely, the convergence

time duration stopping criteria are: 1) the throughput oscillates twice above and twice below

the average of post scale-out throughput, and 2) the oscillation is within a small standard

deviation of 5%. Thus a lower convergence time means that the system is less intrusive

during the scale out operation, and it can resume meaningful work earlier.

(a) Throughput Convergence
Time for Micro-benchmark
Topologies.

(b) Throughput Convergence
Time for Yahoo! Topologies.

(c) Throughput Timeline for
Network Monitoring Topolo-
gies.

Figure 2.7: Scale-out: Convergence Time Comparison (in seconds).

Figure 2.7a and Figure 2.7b show the convergence time for both Micro-benchmark Topolo-

gies and Yahoo Topologies. We observe that Stela is far less intrusive than Storm when

scaling out in the Diamond topology (92% lower) and about as intrusive as Storm in the

Linear topology. Stela takes longer to converge than Storm in some cases like the Star topol-

ogy, primarily because a large number of bolts are affected all at once by the Stela’s scaling.

Nevertheless the post-throughput scaling is worth the longer wait (Figure 2.4a). Further, for

the Yahoo Topologies, Stela’s convergence time is 88% and 75% lower than that of Storm’s

default scheduler.

23

The main reason why Stela has a better convergence time than both Storm’s default sched-

uler and Least Link Load strategy [62] is that Stela does not change the current scheduling

at existing machines (unlike Storm’s default strategy and Least Link Load strategy), instead

choosing to schedule operators at the new machines only.

In Network Monitoring topology, Stela experiences longer convergence time than Storm’s

default scheduler and Least Link Load strategy due to re-parallelization during the scale-

out operation (Figure 2.7c). However, the benefit, as shown in Figure 2.6c, is the higher

post-scale throughput provided by Stela.

2.4.5 Scale-In Experiments

We examine the performance of Stela scale-in by running Yahoo’s PageLoad topology.

The initial cluster size is 8 and Figure 2.8a shows the throughput change after shrinking

cluster size to 4 machines. (We initialize the operator allocation so that each machine can

be occupied by tasks from fewer than 2 operators (bolts and spouts)). We compare against

the performance of a round robin scheduler (same as Storm’s default scheduler), using two

alternative groups of randomly selected machines.

We observe Stela preserves throughput after scale-in while the Storm groups experience

80% and 40% throughput decrease respectively. Thus, Stela’s post scale-in throughput is

2X - 5X higher than randomly choosing machines to remove. Stela also achieves 87.5%

and 75% less down time (time duration when throughput is zero) than group 1 and group

2, respectively – see Figure 2.8b. This is primarily because in Stela migrating operators

with low ETP will intrude less on the application, which will allow downstream congested

components to digest tuples in their queues and continue producing output. In the PageLoad

Topology, the two machines with lowest ETPs are chosen to be redistributed by Stela, which

generates less intrusion for the application thus significantly better performance than Storm’s

default scheduler.

Thus, Stela is intelligent at picking the best machines to remove (via ETPSum). In

comparison, Storm has to be lucky. In the above scenario, 2 out of the 8 machines were the

“best”. The probability that Storm would have been lucky to pick both (when it picks 4 at

random) =
(
6
2

)
/
(
8
4

)
= 0.21, which is low.

2.5 RELATED WORK

Based on its predecessor Aurora [65], Borealis [66] is a stream processing engine that

enables queries to be modified on the fly. Borealis focuses on load balancing on individual

24

(a) Throughput Convergence Time for Ya-
hoo! Topologies.

(b) Post Scale-in Throughput Timeline

Figure 2.8: Scale-in Experiments (Window size 10 seconds).

machines and distributes load shedding in a static environment. Borealis also uses ROD

(resilient operator distribution) to determine the best operator distribution plan that is

closest to an “ideal” feasible set: a maximum set of machines that are underloaded. Borealis

does not explicitly support elasticity.

Stormy [60] uses a logical ring and consistent hashing to place new nodes upon a scale out.

It does not take congestion into account, which Stela does. StreamCloud [49] builds elasticity

into the Borealis Stream Processing Engine [59]. StreamCloud modifies the parallelism level

by splitting queries into sub queries and uses rebalancing to adjust resource usage. Stela

does not change running topologies because we consider it intrusive to the applications.

SEEP [44] uses an approach to elasticity that mainly focuses on operator’s state manage-

ment. It proposes mechanisms to backup, restore and partition operators’ states in order to

achieve short recovery time. There have been several other papers focusing on elasticity for

stateful stream processing systems. [25, 26] from IBM both enable elasticity for IBM System

S [27, 28, 29] and SPADE [30], by increasing the parallelism of processing operators. These

papers apply networking concepts such as congestion control to expand and contract the

parallelism of a processing operator by constantly monitoring the throughput of its links.

These works do not assume fixed number of machines provided (or taken away) by the users.

Our system aims at intelligently prioritizing target operators to further parallelize to (or mi-

grate from) user-determined number of machines joining in (or taken away from) the cluster,

with a mechanism to optimize throughput.

Twitter’s Heron [67] improves Storm’s congestion handling mechanism by using back pres-

sure – however elasticity is not explicitly addressed. Recent work [68] proposes an elasticity

model that provides latency guarantee by tuning task-wise parallelism level in a fixed size

cluster. Meanwhile, another recent work [37] implemented stream processing system elas-

ticity. However, [37] focused on latency (not throughput) and on policy (not mechanism).

25

Nevertheless, Stela’s mechanisms can be used as a black box inside of [37].

Some of these works have looked at policies for adaptivity [37], or [25, 26, 49, 60] focus on

the mechanisms for elasticity. These are important building blocks for adaptivity. To the

best of our knowledge, [62] is the only existing mechanism for elasticity in stream processing

systems – Section 2.4 compared Stela against it.

2.6 CONCLUSION

In this chapter, we presented novel scale-out and scale-in techniques for stream processing

systems. We have created a novel metric, ETP (Effective Throughput Percentage), that

accurately captures the importance of operators based on congestion and contribution to

overall throughput. For scale-out, Stela first selects congested processing operators to re-

parallelize based on ETP. Afterwards, Stela assigns extra resources to the selected operators

to reduce the effect of the bottleneck. For scale-in, we also use a ETP-based approach that

decides which machine to remove and where to migrate affected operators. Our experiments

on both micro-benchmarks Topologies and Yahoo Topologies showed significantly higher

post-scale out throughput than default Storm and Link-based approach, while also achiev-

ing faster convergence. Compared to Apache Storm’s default scheduler, Stela’s scale-out

operation reduces interruption time to a fraction as low as 12.5% and achieves throughput

that is 45-120% higher than Storm’s. Stela’s scale-in operation chooses the right set of

servers to remove and performs 2X-5X better than Storm’s default strategy.

26

CHAPTER 3: HENGE: INTENT-DRIVEN MULTI-TENANT STREAM
PROCESSING

3.1 INTRODUCTION

While stream processing systems for clusters have been around for decades [30, 59], neither

classical nor modern distributed stream processing systems support intent-driven multi-

tenancy. Multi-tenancy is attractive as it reduces acquisition costs and allows sysadmins to

only manage a single consolidated cluster. In industry terms, multi-tenancy reduces capital

and operational expenses (Capex & Opex), lowers total cost of ownership (TCO), increases

resource utilization, and allows jobs to elastically scale based on needs. We believe the

deployer of each job should be able to clearly specify their performance expectations as an

intent to the system, and it is the underlying engine’s responsibility to meet this intent. This

alleviates the developer’s burden of monitoring and adjusting their job. Modern distributed

stream processing systems are very primitive and do not admit intents.

In Henge, we allow each job in a multi-tenant environment to specify its own intent as a

Service Level Objective (SLO) [69]. It is critical that the metrics in an SLO be user-facing

and thus does not involve internal metrics like queue lengths or CPU utilization as these

can vary depending on the software, cluster, and job mix1. We believe lay users should not

have to grapple with such complex metrics. To address this issue, we define a new input

rate-independent metric for throughput SLOs called juice. We show how Henge calculates

juice for arbitrary topologies.

Our latency SLOs and throughput SLOs are immediately useful. Time-sensitive jobs (e.g.,

those related to an ongoing ad campaign) are latency-sensitive and will specify latency SLOs,

while longer running jobs (e.g., sentiment analysis of trending topics) will have throughput

SLOs. Table 3.1 summarizes several real use cases spanning different SLO requirements.

Table 3.2 compares Henge with multi-tenant schedulers that are generic (Mesos, Yarn), as

well as those that are stream processing-specific (Aurora, Borealis and R-Storm). Generic

schedulers largely use reservation-based approaches to specify intents. A reservation is an

explicit request to hold a specified amount of cluster resources for a given duration [75].

Besides not being user-facing, reservations are known to be hard to estimate even for a job

with a static workload [76], let alone the dynamic workloads prevalent in streaming appli-

cations. Classical stream processing systems are either limited to a single node environment

(Aurora), or lack multi-tenant implementations (e.g., Borealis has a multi-tenant proposal,

1However, these latter metrics can be monitored and used internally by the scheduler for self-adaptation.

27

Business Use Case SLO Type & Value

Bloomberg
High Frequency Trading Latency < Tens of ms
Updating top-k recent news articles on website Latency < 1 min.
Combining updates into one email sent per sub-
scriber

Throughput > 40K mes-
sages/s [70]

Uber
Determining price of a ride on the fly, identify-
ing surge periods

Latency < 5 s

Analyzing earnings over time Throughput > 10K rides/hr. [71]

The Weather
Channel

Monitoring natural disasters in real-time Latency < 30 s
Processing collected data for forecasts Throughput > 100K mes-

sages/min. [72]

WebMD
Monitoring blogs to provide real-time updates Latency < 10 min.
Search indexing related websites Throughput: index new sites at

the rate found

E-Commerce
Websites

Counting ad-clicks Latency: update click counts every
second

Processing logs at Alipay Throughput > 6 TB/day [73]

Table 3.1: Stream Processing: Use Cases and Possible SLO Types.

but no associated implementation). R-Storm [74] is resource-aware Storm that adapts jobs

based on CPU, memory, and bandwidth, but does not support user-facing SLOs.

3.2 OVERVIEW OF HENGE

Juice: As input rates vary over time, specifying a throughput SLO as an absolute value is

impractical.

Juice lies in the interval [0, 1] and captures the ratio of processing rate to input rate:

a value of 1.0 is ideal and implies that the rate of incoming tuples equals rate of tuples

processed by the job. Conversely, a value less than 1 indicates that tuples are building up in

queues, waiting to be processed. Throughput SLOs contain a minimum threshold for juice,

making the SLO independent of input rate. We consider processing rate instead of output

rate as this generalizes to cases where input tuples may be filtered or modified: thus, they

affect results but are never outputted.

SLOs: A job’s SLO can capture either latency or juice (or a combination of both). The

SLO has: a) a threshold (min-juice or max-latency), and b) a job priority. Henge combines

these via a user-specifiable utility function, inspired by soft real-time systems [77]. The utility

function maps current achieved performance (latency or juice) to a value that represents the

current benefit to the job. Thus, the function captures the developer intent that a job attains

28

Schedulers Jobs Multi-
Tenant?

User-Facing SLOs?

Mesos [33] General 3 7 Uses Reservations: CPU,
Mem, Disk, Ports

YARN [32] General 3 7 Uses Reservations: CPU,
Mem, Disk

Aurora [22] Streaming 3 3 For Single Node Environ-
ment Only

Borealis [23]Streaming 7 3 Latency, Throughput, Oth-
ers

R-
Storm [74]

Streaming 7 7 Schedules based on: CPU,
Mem, Bandwidth

Henge Streaming 3 3 Latency, Throughput,
Hybrid

Table 3.2: Henge vs. Existing Multi-Tenant Schedulers.

full “utility” if its SLO threshold is met and partial utility if not. Our utility functions are

monotonic: the closer the job is to its SLO threshold, the higher its achieved maximum

possible utility.

State Space Exploration: Moving resources in a live cluster is challenging. It entails a

state space exploration where every step has both: 1) a significant realization cost, as moving

resources takes time and affects jobs, and 2) a convergence cost, since the system needs time

to converge to steady state after a step. Henge adopts a conservatively online approach where

the next step is planned, executed in the system, then the system is allowed to converge,

and the step’s effect is evaluated. Then, the cycle repeats. This conservative exploration

is a good match for modern stream processing clusters because they are unpredictable and

dynamic. Offline exploration (e.g. simulated annealing) is time consuming and may make

decisions on a cluster using stale information (as the cluster has moved on). Conversely,

an aggressive online approach will over-react to changes, and cause more problems than it

solves.

The primary actions in our state machine are: 1) Reconfiguration (give resources to jobs

missing SLO), 2) Reduction (take resources away from overprovisioned jobs satisfying SLO),

and 3) Reversion (give up an exploration path and revert to past good configuration). Henge

gives jobs additional resources proportionate to how congested they are. Highly intrusive

actions like reduction are kept small in number and frequency.

Maximizing System Utility: Via these actions, Henge attempts to continually improve

each individual job and converge it to its maximum achievable utility. Henge is amenable

to different goals for the cluster: either maximizing the minimum utility across jobs, or

29

maximizing the total achieved utility across all jobs. While the former focuses on fairness,

the latter allows more cost-effective use of the cluster, which is especially useful since revenue

is associated with total utility of all jobs. Thus, Henge adopts the goal of maximizing

total achieved utility summed across all jobs. Our approach creates a weak form of Pareto

efficiency [78]; in a system where jobs compete for resources, Henge transfers resources among

jobs only if this will cause the total cluster’s utility to rise.

Preventing Resource Hogging: Topologies with stringent SLOs may try to take over all

the resources of the cluster. To mitigate this, Henge prefers giving resources to topologies

that: a) are farthest from their SLOs, and b) continue to show utility improvements due to

recent Henge actions. This spreads resources across all wanting jobs and mitigates starvation

and resource hogging.

3.3 UNIFYING USER REQUIREMENTS

Topology Utility: A Service Level Objective (SLO) [79] in Henge is user-facing and can

be set without knowledge of internal cluster details. An SLO specifies: a) an SLO threshold

(min-throughput or max-latency); and b) a job priority. Henge girds these requirements

together into a utility function. Intuitively, utility function is a monotonic function that

measures users’ satisfaction towards job performance.

Currently, Henge supports both latency SLOs and throughput SLOs (and hybrids thereof).

For a job with minimum latency requirement, the job’ utility function should be defined such

as the utility is non-increasing as job’s latency is above its latency requirement and increases

(and vice versa for a job with maximum latency SLO). Once the job reaches its performance

target, the utility function should returns constant value.

Given these requirements, Henge allows a variety of utility functions: linear, piece-wise

linear, step functions, lognormal, etc. Utility functions may not be continuous.

Users can pick any utility functions that are monotonic. For concreteness, our Henge

implementation uses a piece-wise linear utility function called a knee function. A knee

function has two parts: a plateau after the SLO threshold, and a sub-SLO for when the job

does not meet the threshold. Concretely, the achieved utility for jobs with throughput and

latency SLOs respectively, are:

Current Utility

Job Max Utility
= min(1,

Current Throughput Metric

SLO Throughput Threshold
) (3.1)

30

Current Utility

Job Max Utility
= min(1,

SLO Latency Threshold

Current Latency
) (3.2)

Utility function provides a unified transformation for jobs with different performance re-

quirements. Using utility function as universal metrics across jobs, Henge performs resource

re-balancings among jobs dynamically using its adaptation state machine [2].

The Juice Metric: For applications that have throughput SLOs, juice defines the fraction

of input data that are effectively processed per unit of time. Juice lies in the interval [0, 1]

and captures the ratio of processing rate to input rate: a value of 1.0 is ideal and implies that

the rate of incoming tuples equals rate of tuples processed by the job. Conversely, a value less

than 1 indicates that tuples are building up in queues, waiting to be processed. Throughput

SLOs contain a minimum threshold for juice, making the SLO independent of input rate.

We consider processing rate instead of output rate as this generalizes to cases where input

tuples may be filtered or modified: thus, they affect results but are never outputted.

Juice is formulated to reflect the global processing efficiency of a topology. An operator’s

contribution to juice is the proportion of input passed in originally from the source (i.e., from

all spouts) that it processed in a given time window. This is the impact of that operator and

its upstream operators on this input. The juice of a topology is then the normalized sum of

juice values of all its sinks.

Essentially, juice captures what fraction of the input data is being processed by the topol-

ogy. It allows us to: 1) abstract away throughput SLO requirements in a way that is

independent of absolute input rate, and 2) track whether congestion is occurring inside a

topology (job). Our design of the juice metric is based on three principles:

• Code Independent: It should be independent of the operators’ code, and should be

calculate-able by only considering the number of tuples generated by operators.

• Rate Independent: It should be input-rate independent.

• Topology Independent: It should be independent of the shape and structure of the

topology. It should be correct in spite of duplication, merging, and splitting of tuples.

Henge calculates juice in configurable windows of time (unit time). Source input tuples

are those that arrive at a spout in unit time. For each operator o in a topology that has n

parents, we define T i
o as the sum of tuples sent out from its ith parent per time unit, and Ei

o

as the number of tuples that operator o executed (per time unit), from those received from

parent i. The per-operator contribution to juice, Js
o , is the proportion of source input sent

from spout s that operator o received and processed. Given that Js
i is the juice of o’s ith

parent, then Js
o is:

31

Js
o =

n∑
i=1

(
Js
i ×

Ei
o

T i
o

)
(3.3)

A spout s has no parents, and its juice: Js = Es

Ts
= 1.0.

In Equation. 3.3, the fraction Ei
o

T i
o

reflects the proportion of tuples an operator received

from its parents, and processed successfully. If no tuples are waiting in queues, this fraction

is equal to 1.0. By multiplying this value with the parent’s juice we accumulate through the

topology the effect of all upstream operators.

We make two important observations. In the term Ei
o

T i
o
, it is critical to take the denominator

as the number of tuples sent by a parent rather than received at the operator. This allows

juice: a) to account for data splitting at the parent (fork in the DAG), and b) to be reduced

by tuples dropped by the network. The numerator is the number of processed tuples rather

than the number of output tuples – this allows juice to generalize to operator types whose

processing may drop tuples (e.g., filter).

Given all operator juice values, a topology’s juice can be calculated by normalizing w.r.t.

number of spouts: ∑
Sinks si, Spouts sj

(J
sj
si)

Total Number of Spouts
(3.4)

If no tuples are lost in the system, the numerator equals the number of spouts. To ensure

that juice stays below 1.0, we normalize the sum with the number of spouts.

3.4 JUICE AS A PERFORMANCE INDICATOR

Juice is an indicator of queue size: Fig. 3.1a shows the inverse correlation between

topology juice and queue size at the most congested operator of a PageLoad topology. Queues

buffer incoming data for operator executors, and longer queues imply slower execution rate

and higher latencies. Initially queue lengths are high and erratic–juice captures this by stay-

ing well below 1. At the reconfiguration point (910 s) the operator is given more executors,

and juice converges to 1 as queue lengths fall, stabilizing by 1000 s.

Juice is independent of operations and input rate: In Fig. 3.1b, we run 5 PageLoad

topologies on one cluster, and show data for one of them. Initially juice stabilizes to around

1.0, near t=1000 s (values above 1 are due to synchronization errors, but they don’t affect

our logic). PageLoad filters tuples, thus output rate is < input rate–however, juice is 1.0 as

32

Reconfig-
uration

Reconfig-
uration

a) b)

Q
ue

ue
 S

iz
e

Ju
ic

e

(a) Juice vs. Queue Size: Inverse Relation-
ship.

Reconfiguration

Ju
ic
e

(b) Juice is Rate-Independent: Input rate
is increased by 3 × at 4000 s, but juice does
not change. When juice falls to 0.992 at 4338
s, Henge stabilizes it to 1.0 by 5734 s.

Figure 3.1: Evaluating Juice Effectiveness.

it shows that all input tuples are being processed.

Then at 4000 s, we triple the input rate to all tenant topologies. Notice that juice stays

1.0. Due to natural fluctuations, at 4338 s, PageLoad’s juice drops to 0.992. This triggers

reconfigurations (vertical lines) from Henge, stabilizing the system by 5734 s, maximizing

cluster utility.

3.5 EVALUATION

Henge uses topology utilities to make dynamic recofiguration choices. Here we simulate

two types of workloads that exhibit a diurnal pattern [80, 81]: SDSC-HTTP [82] and EPA-

HTTP traces [83]. We inject these workloads into PageLoad topologies with 5 jobs run with

the SDSC-HTTP trace and concurrently and 5 other jobs run with the EPA-HTTP trace.

All jobs have max-utility=35, and a latency SLO of 60 ms.

Fig. 3.2 shows the result of running 48 hours of the trace (each hour is mapped to 10

mins). In Fig. 3.2a, workloads increase from hour 7 of day 1, reach their peak by hour 131
3
,

and then fall. Henge reconfigures all 10 jobs, reaching 89% of max cluster utility by hour

15.

Fig. 3.2b shows a topology running the EPA workload (other topologies exhibited similar

behavior). Observe how Henge reconfigurations from hour 8 to 16 adapt to the fast changing

workload. This results in fewer SLO violations during the second peak (hours 32 to 40).

Thus, Henge tackles diurnal workloads without extra resources.

Fig. 3.2c shows the CDF of SLO satisfation for three systems. Default Storm gives 0.0006%

SLO satisfaction at the median, and 30.9% at the 90th percentile (meaning that 90% of the

time, default Storm provided at most 30.9% of the cluster’s max achievable utility.). Henge

33

(a)

(b)

(c)

Figure 3.2: Diurnal Workloads: a) Input and output rates vs time, for two diurnal work-
loads. b) Utility of job (reconfigured by Henge) with EPA workload, c) CDF of SLO satis-
faction for Henge, default Storm, & manual configuration. Henge adapts during first cycle
and fewer reconfigurations are needed later.

yields 74.9%, 99.1%, and 100% SLO satisfaction at the 15th, 50th, and 90th percentiles

respectively.

Henge is preferable over manual configurations. We manually configured all topologies to

meet their SLOs at median load. They provide 66.5%, 99.8% and 100% SLO satisfaction at

the 15th, 50th and 90th percentiles respectively. Henge is better than manual configurations

from the 15th to 45th percentile, and comparable later.

Henge has an average of 88.12% SLO satisfaction rate, while default Storm and manually

configured topologies provide an average of 4.56% and 87.77% respectively. Thus, Henge

gives 19.3× better SLO satisfaction than default Storm and does better than manual config-

uration. The total time taken by Henge’s actions, summed across all topologies composed of

only 0.49% of the total runtime per topology. The longest convergence time for any topology

was takes only 0.56% of the total runtime.

3.6 CONCLUSION

We presented Henge as a system for intent-driven, SLO-based multi-tenant stream pro-

cessing. We explore Henge’s approach to unify user requirements by translating different

34

types of performance requirement to resource need in multi-tenant environment. Henge pro-

vides SLO satisfaction for jobs with latency and/or throughput SLOs. Henge also proposes

a new metric called juice, that helps systems to interpret throughput satisfaction indepen-

dent of input rate and topology structure. Henge makes dynamic reconfiguration operations

based on these proposed metrics and is able to provide 19.3× better satisfaction rate than

Storm with less than 1% reconfiguration overhead.

35

CHAPTER 4: POPULAR IS CHEAPER: CURTAILING MEMORY COSTS
IN INTERACTIVE ANALYTICS ENGINES.

4.1 INTRODUCTION

Real-time analytics is projected to grow annually at a rate of 31% [6]. Apart from stream

processing engines, which have received much attention [7, 8, 84], real time analytics now

also includes the burgeoning area of interactive data analytics engines such as Druid [11],

Redshift [13], Mesa [14], Presto [15] and Pinot [12]. These systems have seen widespread

adoption [18, 19] in companies which require applications to support sub-second query re-

sponse time. Applications span usage analytics, revenue reporting, spam analytics, ad feed-

back, and others [31]. Typically large companies have their own on-premise deployments

while smaller companies use a public cloud. The internal deployment of Druid at Yahoo!

(now called Oath) has more than 2000 hosts, stores petabytes of data and serves millions of

queries per day at sub-second latency scales [31].

Many typical interactive analytics engines today follow Lambda [85] or Kappa architec-

ture [86], handle both real-time and interactive off-line queries, requires fast responses. These

engines are expected to cache popular historical data and relies on in-memory processing

to provide short query makespan. A typical interactive analytics engine like Druid [11]

parallelize query processing over multiple compute nodes that contain required data (called

data segments) to reduce query latency. On the other hand, serving multiple queries con-

currently accessing popular data requires parallelization through data replication. While

full replication for all data provides best performance, it is impossible due to the limited

memory.

Interactive analytics engines employ two forms of parallelism. First, data is organized into

data blocks, called segments–this is standard in all engines. For instance, in Druid, hourly

data from a given source constitutes a segment. Second, a query that accesses multiple

segments can be run in parallel on each of those segments, and then the results are collected

and aggregated. Query parallelization helps achieve low latency. Because a query (or part

thereof) running at a compute node needs to have its input segment(s) cached at that node’s

memory, segment placement is a problem that needs careful solutions. Full replication is

impossible due to the limited memory.

Figure 4.1 shows the query latency for two cluster sizes (15, 30 compute nodes) and

query rates (1500, 2500 qps). For each configuration (cluster size / query rate pair), as the

replication factor (applied uniformly across segments) is increased, we observe the curve hits

a “knee”, beyond which further replication yields marginal latency improvements. The knee

36

for 15 / 2500 is 9 replicas, and for the other two is 6 replicas. Our goal is to achieve the knee

of the curve for individual segments (which is a function of their respective query loads), in

an adaptive way.

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy
 (

m
s)

Replication Factor (RF)

15 / 2500
15 / 1500
30 / 2500

Figure 4.1: Average Query Latency observed
with varying replication factors for different
(cluster size / query injection rate) combina-
tions.

Getafix’s philosophy is developed from the

production pattern we have observed from

Yahoo!’s Druid cluster. We discovered that

at any given time, the most popular data

(1%) is an order of magnitude more popu-

lar, in terms of number of accesses, than the

least popular (40%). Getafix is built atop in-

tuition arising from our optimal solution to

the static version of the replication problem

(which we call ModifiedBestFit). Our

static solution is provably optimal in both

makespan (runtime of the query set) as well

as memory costs. In the dynamic scenario,

Getafix makes replication decisions by con-

tinually measuring query injection rate, seg-

ment popularity, and current cluster state.

4.2 THE REPLICATION STRATEGY

Problem Formulation: Given m segments, n historical nodes (HNs), and k queries that

access a subset of these segments, our goal is to find a segment allocation (segment assign-

ment to HNs) that both: 1) minimizes total runtime (makespan), and 2) minimizes the total

number of segment replicas. For simplicity we assume: a) each query takes unit time to

process each segment it accesses, b) initially HNs have no segments loaded, and c) HNs are

homogeneous in computation power. Our implementation relaxes these assumptions.

Consider the query-segment pairs in the given static workload, i.e., all pairs (Qi, Sj) where

query Qi needs to access segment Sj. Spreading these query-segment pairs uniformly across

all HNs, in a load-balanced way, automatically gives a time-optimal schedule: no two HNs

finish more than 1 time unit apart from each other. A load balanced assignment is desirable

as it always achieves the minimum runtime (makespan) for the set of queries. However,

arbitrarily (or randomly) assigning query-segment pairs to HNs may not minimize the total

amount of replication across HNs.

Consider an example with 6 queries accessing 4 segments. The access characteristics C

37

for the 4 segments are: {S1:6, S2:3, S3:2, S4:1}. In other words, 6 queries access segment S1,

3 access S2 and so on. A possible time-optimal (balanced) assignment of the query-segment

pair could be: bin HN1 = {S1:3, S2:1}, HN2 = {S2:2, S3:1, S4:1}, HN3 = {S1:3, S3:1}.
However, this assignment is not optimal in replication factor (and thus storage). The total

number of replicas stored in the HNs in this assignment is 7. The minimum number of

replicas required for this example is 5. An allocation that achieves this minimum is: HN1

= {S1:4}, HN2 = {S2:3, S4:1}, HN3 = {S1:2, S3:2} (Figure 4.2).

Formally, the input to our problem is: 1) segment access counts C = {c1, . . . cm} for

k queries accessing m segments, and 2) n HNs each with capacity d
∑

i ci
n
e (in our paper,

“capacity” always means “compute capacity”). We wish to find: Allocation X = {xij =

1, if segment i is replicated at HN j}, such that it minimizes
∑

i

∑
j xij.

Algorithm 4.1 Generalized Allocation Algorithm.

1: function ModifiedFit(C, nodelist) . C: Access counts for each segment . nodelist:
List of HNs

2: n← Length(nodelist)

3: capacity ← d
∑

Ci∈C |Ci|
n

e
4: binCap← InitArray(n, capacity)
5: priorityQueue← BuildMaxHeap(C)
6: while !Empty(priorityQueue) do
7: (segment, count)← Extract(priorityQueue)
8: (left, bin)← ChooseHistoricalNode
9: (count, binCap)

10: LoadSegment(nodelist, bin, segment)
11: if left > 0 then
12: Insert(priorityQueue, (segment, left))

We solve this problem as a colored variant of the traditional bin packing problem [87].

A query-segment pair is treated as a ball and a HN represents a bin. Each segment is

represented by a color, and there are as many balls of a color as there are queries accessing

it. The number of distinct colors assigned to a bin (HN) is the number of segment replicas

this HN needs to store. The problem is then to place the balls in the bins in a load-balanced

way that minimizes the number of “splits” for all colors, i.e., the number of bins each color

is present in, summed up across all colors. This number of splits is the same as the total

number of segment replicas. Unlike traditional bin packing which is NP-hard, this version

of the problem is solvable in polynomial time.

ModifiedBestFit: Algorithm 4.1 depicts our solution to the problem. The algorithm

maintains a priority queue of segments, sorted in decreasing order of popularity (i.e., num-

ber of queries accessing the segment). The algorithm works iteratively: in each iteration

38

it extracts the next segment Sj from the head of the queue, and allocates the query-

segment pairs corresponding to that segment to a HN, selected based on a heuristic called

ChooseHistoricalNode. If the selected HN’s current capacity is insufficient to accom-

modate all the pairs, then the remaining available compute capacity in that HN is filled with

a subset of it. Subsequently, the segment’s count is updated to reflect remaining unallocated

query-segment pairs, and finally, the segment is re-inserted back into the priority queue at

the appropriate position.

S1

S1

S1

S1 S4

S3

S3

S1

S2

S2

S2 S1

HN1 HN2 HN3

HN	Capacity	=	(6	+	3	+	2	+	1)/3	=		4
Total	replicas	=	1	+	2	+	2	=	5

Segment	
Name

S1 S2 S3 S4

Count 6 3 2 1

Segment	Access	Counts

Figure 4.2: Problem depicted with
balls and bin. Query-segment pairs
are balls and historical nodes repre-
sent bins. All balls of same color ac-
cess the same segment. HN capacity
refers to compute capacity. Optimal
assignment shown.

The total number of iterations in this algorithm

equals the total number of replicas created across

the cluster. The ChooseHistoricalNode problem

bears similarities with segmentation in traditional op-

erating systems [88]. We explored three strategies to

solve ChooseHistoricalNode: First Fit, Largest

Fit, and Best Fit. Of the three, we only describe Best

Fit here as it gives an optimal allocation.

In each iteration, we choose the next HN that would

have the least compute capacity (space, or number of

slots for balls) remaining after accommodating all the

queries for the picked segment (head of queue). Ties

are broken by picking the lower HN id. If none of the

nodes have sufficient capacity to fit all the queries for

the picked segment, we default to Largest Fit for this

iteration, i.e., we choose the HN with the largest avail-

able capacity (ties broken by lower HN id), fill it as

much as possible, and re-insert unassigned queries for

the segment back into the sorted queue. We call this

algorithm ModifiedBestFit. Consider our running

example (Figure 4.2) where C is {S1:6, S2:3, S3:2,

S4:1}. The algorithm assigns S1 to HN1 and S2 to HN2. Next, it picks segment S1 (again

tie broken with S3) and assigns it to HN3 because it has sufficient space to fit all the balls.

The final assignment produced is optimal in both makespan and replication factor.

4.3 REDUCING NETWORK TRANSFER THROUGH MATCHING

Dynamically, Getafix performs ModifiedBestFit periodically by collecting popularity

of each data segment. Consider the example shown in Figure 4.3. In the configuration at

39

time T1 (top part of figure), HN1 has segments S2 and S3, HN2 has S4 only, and HN3 has

segments S1 and S2. At time T2, ModifiedBestFit expects the following configuration:

E1 = {S1}, E2 = {S2, S4}, E3 = {S1, S3}. If each HNi chooses to host the segments in Ei,

then the algorithm needs to fetch 3 segments in total. However the minimum required is 2,

given by the following assignment: E1 to HN3, E2 to HN2, E3 to HN1.

Figure 4.3: Physical HN Mapping problem
from Figure 4.2 represented as a bipartite
graph.

We model this problem as a bipartite

graph shown in Figure 4.3 where vertices

on the bottom represent expected configu-

rations (Ej) and vertices on the top repre-

sent HNs (HNi) with the current set of repli-

cas. An HNi − Ej edge represents the net-

work cost to transfer all of Ej’s segments to

HNi (except those already at HNi). Net-

work transfer is minimized by finding the

minimum cost matching in this bipartite

graph. We use the classical Hungarian Al-

gorithm [89] to find the minimum match-

ing. It has a complexity of O(n3) where n

is the number of HNs. This is acceptable

because interactive analytics engine clusters

only have a few hundred nodes. The coordi-

nator uses the results to set up data transfers for the segments to appropriate HNs.

4.4 DYNAMIC REPLICATION COMPARING TO PRIOR APPROACH

We compare Getafix with Scarlett [90] where the replication factors is determined by the

number of accesses and the placement is determined by machines load factor. We implement

Scarlett replication and placement strategy on top of Druid and performs comparison of

memory usage and query latency using number of HNs ranges from 5 to 20.

Comparison vs. Scarlett: We increase the query load (number of workload generator

clients varied from 5 to 20) while keeping the compute capacity (HNs) fixed (20). Figure 4.4a

plots the savings in Getafix’s memory usage compared to Scarlett’s. Getafix uses 1.45

- 2.15× less total memory (across HNs), and 1.72 - 1.92× less maximum memory in a

single HN. Scarlett alleviates query hotspots by creating more replicas of popular segments,

while Getafix carefully balances replicas of popular and unpopular segments to keep overall

40

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

5 10 15 20

R
ed

uc
tio

n
Fa

ct
or

C
om

pa
re

d
T

o
Sc

ar
le

tt

Number of Clients

Total
Maximum
99th Percentile

(a) Scarlett memory divided by Getafix total
memory. Higher is better.

-10
-5
 0
 5

 10
 15
 20

5 10 15 20

Im
pr

ov
em

en
t

C
om

pa
re

d
to

 S
ca

rl
et

t(
%

)

Number of Clients

99th Percentile Latency
Average Latency
Makespan

(b) Reduction in Makespan, Average and 99th
Percentile Latency of Getafix compared to Scar-
lett. Higher is better.

Figure 4.4: AWS Experiments: Getafix vs. Scarlett with increasing load (number of client
varying from 5 to 20).

replication (and memory usage) low. Getafix’s memory savings also increases as more clients

are added.

Memory Dollar Cost Savings in Public Cloud: We perform a back of the envelope

calculation, based on our experimental numbers. For the 20 HN + 20 client experiment,

Getafix has an effective replication factor of 1.9 compared to Scarlett’s 4.2. (Our trace

study shows heavy-tailed nature of segment popularity [3]. This implies the very popular

segments influence effective replication factor.) In a public cloud deployment, where popular

data size is 100 TB 1, Getafix thus can reduce memory usage by approximately 230 TB (100

TB × (4.2 - 1.9)). This amounts to cost savings of 230 × 103 GB × $0.005/GB/hour =

$1150 per hour. Annually, this would amount to $10 million worth of savings.

To quantify the impact of this memory savings on performance, Figure 4.4b plots the

reduction in makespan, average and 99th percentile latency for Getafix compared to Scarlett.

Getafix completes all the queries within ±5% of Scarlett for all the experiments. Query

latency is also comparable.

We conclude that compared to Scarlett, Getafix significantly reduces memory usage in a

private cloud, dollar cost in a public cloud, with small impact on query performance.

1Most present day production clusters in Google, Yahoo handle petabytes of data [14] per day. Of this
only a fraction of the data is most popular and hosted in memory. We conservatively estimated 100 TB as
the ballpark of popular data size.

41

4.5 CONCLUSION

In this chapter, we proposed techniques for segment management in interactive data ana-

lytics systems. We use segment popularity information to make decisions on which segments

to load and how many replicas to assign. Our ModifiedBestFit strategy is optimal in a

static setting and we adapt to workload changes by reallocating segments with minimized

bandwidth consumption. We show that Getafix uses memory more efficiently by using 1.45

- 2.15× less total memory (across historical nodes) and 1.72 - 1.82× (in a single historical

node) less maximum memory comparing to existing data replication mechanism like Scarlett,

without compromising query makespan.

42

CHAPTER 5: MOVE FAST AND MEET DEADLINES: FINE-GRAINED
REAL-TIME STREAM PROCESSING WITH CAMEO.

5.1 INTRODUCTION

Stream processing applications in large companies handle tens of millions of events per

second [16, 17, 91]. In an attempt to scale and keep total cost of ownership (TCO) low,

today’s systems: a) parallelize operators across machines, and b) use multi-tenancy, wherein

operators are collocated on shared resources. Yet, resource provisioning in production envi-

ronments remains challenging due to two major reasons:

(i) High workload variability. In a production cluster at a large online services company,

we observed orders of magnitude variation in event ingestion and processing rates, across

time, across data sources, across operators, and across applications. This indicates that

resource allocation needs to be dynamically tailored towards each operator in each query, in

a nimble and adept manner at run time.

(ii) Latency targets vary across applications. User expectations come in myriad

shapes. Some applications require quick responses to events of interest, i.e., short end-

to-end latency. Others wish to maximize throughput under limited resources, and yet others

desire high resource utilization. Violating such user expectations is expensive, resulting in

breaches of service-level agreements (SLAs), monetary losses, and customer dissatisfaction.

To address these challenges, we explore a new fine-grained philosophy for designing a multi-

tenant stream processing system. Our key idea is to provision resources to each operator

based solely on its immediate need. Concretely we focus on deadline-driven needs. Our

fine-grained approach is inspired by the recent emergence of event-driven data processing

architectures including actor frameworks like Orleans [92, 93] and Akka [94], and serverless

cloud platforms [95, 96, 97, 98].

Our motivation for exploring a fine-grained approach is to enable resource sharing directly

among operators. This is more efficient than the traditional slot-based approach, wherein op-

erators are assigned dedicated resources. In the slot-based approach, operators are mapped

onto processes or threads—examples include task slots in Flink [99], instances in Heron [8],

and executors in Spark Streaming [10]. Developers then need to either assign applications

to a dedicated subset of machines [100], or place execution slots in resource containers and

acquire physical resources (CPUs and memory) through resource managers [32, 33, 34].

While slot-based systems provide isolation, they are hard to dynamically reconfigure in the

face of workload variability. As a result it has become common for developers to “game” their

resource requests, asking for over-provisioned resources, far above what the job needs [35].

43

Aggressive users starve other jobs which might need immediate resources, and the upshot is

unfair allocations and low utilization.

Figure 5.1: Slot-based system (Flink), Simple
Actor system (Orleans), and our framework
Cameo.

At the same time, today’s fine-grained

scheduling systems like Orleans, as shown

in Figure 5.1, cause high tail latencies. The

figure also shows that a slot-based system

(Flink on YARN), which maps each executor

to a CPU, leads to low resource utilization.

The plot shows that our approach, Cameo,

can provide both high utilization and low

tail latency.

To realize our approach, we develop a new

priority-based framework for fine-grained distributed stream processing. This requires us

to tackle several architectural design challenges including: 1) translating a job’s perfor-

mance target (deadlines) to priorities of individual messages, 2) developing interfaces to

use real-time scheduling policies such as earliest deadline first (EDF) [101], least laxity

first (LLF) [102] etc., and 3) low-overhead scheduling of operators for prioritized messages.

We present Cameo, a new scheduling framework designed for data streaming applications.

Cameo:

• Dynamically derives priorities of operators, using both: a) static input, e.g., job deadline;

and b) dynamic stimulus, e.g., tracking stream progress, profiled message execution times.

• Contributes new mechanisms: i) scheduling contexts, which propagate scheduling states

along dataflow paths, ii) a context handling interface, which enables pluggable scheduling

strategies (e.g., laxity, deadline, etc.), and iii) tackles required scheduling issues including

per-event synchronization, and semantic-awareness to events.

• Provides low-overhead scheduling by: i) using a stateless scheduler, and ii) allowing

scheduling operations to be driven purely by message arrivals and flow.

We build Cameo on Flare [17], which is a distributed data flow runtime built atop Or-

leans [92, 93]. Our experiments are run on Microsoft Azure, using production workloads.

Cameo, using a laxity-based scheduler, reduces latency by up to 2.7× in single-query sce-

narios and up to 4.6× in multi-query scenarios. Cameo schedules are resilient to transient

workload spikes and ingestion rate skews across sources. Cameo’s scheduling decisions incur

less than 6.4% overhead.

44

(a) Data Volume Dis-
tribution

(b) Job Scheduling & Completion Laten-
cies

(c) Ingestion Heatmap

Figure 5.2: Workload characteristics collected from a production stream analytics system.

5.2 BACKGROUND AND MOTIVATION

5.2.1 Workload Characteristics

We study a production cluster that ingests more than 10 PB per day over several 100K

machines. The shared cluster has several internal teams running streaming applications

which perform debugging, monitoring, impact analysis, etc. We first make key observations

about this workload.

Long-tail streams drive resource over-provisioning. Each data stream is handled by

a standing streaming query, deployed as a dataflow job. As shown in Figure 5.2a, we first

observe that 10% of the streams process a majority of the data. Additionally, we observe

that a long tail of streams, each processing small amount data, are responsible for over-

provisioning—their users rarely have any means of accurately gauging how many nodes are

required, and end up over-provisioning for their job.

Temporal variation makes resource prediction difficult. Figure 5.2c is a heat map

showing incoming data volume for 20 different stream sources. The graph shows a high

45

degree of variability across both sources and time. A single stream can have spikes lasting

one to a few seconds, as well as periods of idleness. Further, this pattern is continuously

changing. This points to the need for an agile and fine-grained way to respond to temporal

variations, as they are occurring.

Users already try to do fine-grained scheduling. We have observed that instead of

continuously running streaming applications, our users prefer to provision a cluster using

external resource managers (e.g., YARN [32], Mesos [33]), and then run periodic micro-

batch jobs. Their implicit aim is to improve resource utilization and throughput (albeit

with unpredictable latencies). However, Figure 5.2b shows that this ad-hoc approach causes

overheads as high as 80%. This points to the need for a common way to allow all users to

perform fine-grained scheduling, without a hit on performance.

Latency requirements vary across jobs. Finally, we also see a wide range of latency

requirements across jobs. Figure 5.2b shows that the job completion time for the micro-

aggregation jobs ranges from less than 10 seconds up to 1000 seconds. This suggests that

the range of SLAs required by queries will vary across a wide range. This also presents an

opportunity for priority-based scheduling: applications have longer latency constraints tend

to have greater flexibility in terms of when its input can be processed (and vice versa).

5.2.2 Prior Approaches

Dynamic resource provisioning for stream processing. Dynamic resource provisioning

for streaming data has been addressed primarily from the perspective of dataflow reconfig-

uration. These works fall into three categories as shown in Figure 5.3:

i) Diagnosis And Policies: Mechanisms for when and how resource re-allocation is performed;

ii) Elasticity Mechanisms: Mechanisms for efficient query reconfiguration; and

iii) Resource Sharing: Mechanisms for dynamic performance isolation among streaming

queries.

These techniques make changes to the dataflows in reaction to a performance metric (e.g.,

latency) deteriorating.

Cameo’s approach does not involve changes to the dataflow. It is based on the insight that

the streaming engine can delay processing of those query operators which will not violate

performance targets right away. This allows us to quickly prioritize and provision resources

proactively for those other operators which could immediately need resources. At the same

time, existing reactive techniques from Figure 5.3 are orthogonal to our approach and can

be used alongside our proactive techniques.

The promise of event-driven systems. To achieve fine-grained scheduling, a promising

46

Elasticity Mechanisms

[1, 37, 38,
39, 42, 43]

[36, 41]

Resource Sharing

[35, 103]

[2]

Diagnosis And Policies

[17, 44, 45,
46, 47, 48,
49, 50, 51]

[104]

Figure 5.3: Existing Dataflow Reconfiguration Solutions.

direction is to leverage emerging event-driven systems such as actor frameworks [105, 106]

and serverless platforms [107]. Unlike slot-based stream processing systems like Flink [9] and

Storm [108], operators here are not mapped to specific CPUs. Instead event-driven systems

maintain centralized queues to host incoming messages and dynamically dispatch messages to

available CPUs. This provides an opportunity to develop systems that can manage a unified

queue of messages across query boundaries, and combat the over-provisioning of slot-based

approaches. Recent proposals for this execution model also include [96, 107, 109, 110].

Cameo builds on the rich legacy of work from two communities: classical real-time sys-

tems [111, 112] and first-generation stream management systems (DSMS) in the database

community [59, 113, 114, 115]. The former category has produced rich scheduling algo-

rithms, but unlike Cameo, none build a full working system that is flexible in policies, or

support streaming operator semantics. In the latter category the closest to our work are

event-driven approaches [59, 116, 117]. But these do not interpret stream progress to derive

priorities or support trigger analysis for distributed, user-defined operators. Further, they

adopt a centralized, stateful scheduler design, where the scheduler always maintains state

for all queries, making them challenging to scale.

Achieving Cameo’s goal of dynamic resource provisioning is challenging. Firstly, messages

sent by user-defined operators are a black-box to event schedulers. Inferring their impact

on query performance requires new techniques to analyze and re-prioritize said messages.

Secondly, event-driven schedulers must scale with message volume and not bottleneck.

47

5.3 DESIGN OVERVIEW

Assumptions, System Model: We design Cameo to support streaming queries on clusters

shared by cooperative users, e.g., within an organization. We also assume that the user

specifies a latency target at query submission time, e.g., derived from product and service

requirements.

The architecture of Cameo consists of two major components: (i) a scheduling strategy

which determines message priority by interpreting the semantics of query and data streams

given a latency target. (Section 5.4), and (ii) a scheduling framework that 1. enables message

priority to be generated using a pluggable strategy, and 2. schedules operators dynamically

based on their current pending messsages’ priorities (Section 5.5).

Cameo prioritizes operator processing by computing the start deadlines of arriving mes-

sages, i.e., latest time for a message to start execution at an operator without violating

the downstream dataflow’s latency target for that message. Cameo continuously reorders

operator-message pairs to prioritize messages with earlier deadlines.

Calculating priorities requires the scheduler to continuously book-keep both: (i) per-

job static information, e.g., latency constraint/requirement1 and dataflow topology, and

(ii) dynamic information such as the timestamps of tuples being processed (e.g., stream

progress [118, 119]), and estimated execution cost per operator. To scale such a fine-grained

scheduling approach to a large number of jobs, Cameo utilizes scheduling contexts— data

structures attached to messages that capture and transport information required to generate

priorities.

The scheduling framework of Cameo has two levels. The upper level consists of context

converters, embedded into each operator. A context converter modifies and propagates

scheduling contexts attached to a message. The lower level is a stateless scheduler that

determines target operator’s priority by interpreting scheduling context attached to the

message. We also design a programmable API for a pluggable scheduling strategy that

can be used to handle scheduling contexts. In summary, these design decisions make our

scheduler scale to a large number of jobs with low overhead.

Example. We present an example highlighting our approach. Consider a workload, shown

in Figure 5.4, consisting of two streaming dataflows J1 and J2 where J1 performs a batch

analytics query and J2 performs a latency sensitive anomaly detection pipeline. Each has

an output operator processing messages from upstream operators. The default approach

used by actor systems like Orleans is to: i) order messages based on arrival, and ii) give

each operator a fixed time duration (called “quantum”) to process its messages. Using

1We use latency constraint and latency requirement interchangeably.

48

Figure 5.4: Scheduling Example: J1 is batch analytics, J2 is latency-sensitive. Fair-share
scheduler creates schedules “a” and “b”. Topology-aware scheduler reduces violations (“c”).
Semantics-aware scheduler further reduces violations (“d”). We further explain these exam-
ples in Section 5.4.2

this approach we derive the schedule “a” with a small quantum, and a schedule “b” with

a large quantum — both result in two latency violations for J2. In comparison, Cameo

discovers the opportunity to postpone less latency-sensitive messages (and thus their target

operators). This helps J2 meet its deadline by leveraging topology and query semantics.

This is depicted in schedules “c” and “d”. This example shows that when and how long an

operator is scheduled to run should be dynamically determined by the priority of the next

pending message. We expand on these aspects in the forthcoming sections.

5.4 SCHEDULING POLICIES IN CAMEO

One of our primary goals in Cameo is to enable fine-grained scheduling policies for

dataflows. These policies can prioritize messages based on information, like the deadline

remaining or processing time for each message, etc. To enable such policies, we require

techniques that can calculate the priority of a message for a given policy.

We model our setting as a non-preemptive, non-uniform task time, multi-processor, real-

time scheduling problem. Such problems are known to be NP-Complete offline and cannot

be solved optially online without complete knowledge of future tasks [120, 121]. Thus, we

consider how a number of commonly used policies in this domain, including Least-Laxity-

First (LLF) [102], Earliest-Deadline-First (EDF) [101] and Shortest-Job-First (SJF) [122],

and describe how such policies can be used for event-driven stream processing.We use the

LLF policy as the default policy in our description below.

The above policies try to prioritize messages to avoid violating latency constraints. Deriv-

ing the priority of a message requires analyzing the impact of each operator in the dataflow

on query performance. We next discuss how being deadline-aware can help Cameo derive

49

appropriate priorities. We also discuss how being aware of query semantics can further

improve prioritization.

Symbol Definition

IDM ID of Message M.
ddlM Message start deadline.
oM target operator of M .
CoM Estimated execution cost of M on its target operator.

tM , and pM Physical (and logical) time associated with the last event required to produce M .
L Dataflow latency constraint of the dataflow that M belongs to.

pMF
, and tMF

Frontier progress, and frontier time.

Table 5.1: Notations used in paper for message M .

5.4.1 Definitions and Underpinnings

Event. Input data arrives as events, associated with a logical time [123] that indicates the

stream progress of these events in the input stream.

Dataflow job and operators. A dataflow job consists of a DAG of stages. Each stage

operates a user-defined function. A stage can be parallelized and executed by a set of

dataflow operators.

We say an operator ok is invoked when it processes its input message, and ok is triggered

when it is invoked and leads to an output message, which is either passed downstream to

further operators or the final job output.

Cameo considers two types of operators: i) regular operators that are triggered imme-

diately on invocation; and ii) windowed operators [118] that partitions data stream into

sections by logical times and triggers only when all data from the section are observed.

Message timestamps. We denote a message M as a tuple (oM , (pM , tM)), where: a) oM

is the operator executing the message; b) pM and tM record the logical and physical time

of the input stream that is associated with M , respectively. Intuitively, M is influenced by

input stream with logical time ≤ pM . Physical time tM marks the system time when pM is

observed at a source operator.

We denote CoM as the estimated time to process message M on target operator O, and L

as the latency constraint for the dataflow that M belongs to.

Latency. Consider a message M generated as the output of a dataflow (at its sink operator).

Consider the set of all events E that influenced the generation of M . We define latency as the

difference between the last arrival time of any event in E and the time when M is generated.

50

5.4.2 Calculating Message Deadline

We next consider the LLF scheduling policy where we wish to prioritize messages which

have the least laxity (i.e., flexibility). Intuitively, this allows us to prioritize messages that

are closer to violating their latency constraint. To do this, we discuss how to determine

the latest time that a message M can start executing at operator O without violating the

job’s latency constraint. We call this as the start deadline or in short the deadline of the

message M , denoted as ddlM . For the LLF scheduler, ddlM is the message priority (lower

value implies higher priority).

We describe how to derive the priority (deadline) using topology-awareness and then query

(semantic)-awareness.

• Topology Awareness

Single-operator dataflow, Regular operator. Consider a dataflow with only one

regular operator oM . The latency constraint is L. If an event occurs at time tM , then

M should complete processing before tM + L. The start deadline, given execution

estimate CoM , is:

ddlM = tM + L− CoM (5.1)

Multiple-operator dataflow, Regular operator. For an operator o inside a

dataflow DAG that is invoked by message M , the start deadline of M needs to account

for execution time of downstream operators. We estimate the maximum of execution

times of critical path [42] from o to any output operator as Cpath. The start deadline

of M is then:

ddlM = tM + L− COM
− Cpath (5.2)

Schedule “c” of Figure 5.4 showed an example of topology-aware scheduling and how

topology awareness helps reduce violations. For example, ddlM2 = 30 + 50 − 20 = 60

means that M2 is promoted due to its urgency. We later show that even when query

semantics are not available (e.g., UDFs), Cameo improves scheduling with topology

information alone. Note that upstream operators are not involved in this calculation.

COM
and Cpath can be calculated by profiling.

• Query Awareness

51

Cameo can also leverage dataflow semantics, i.e., knowledge of user-specified commands

inside the operators. This enables the scheduler to identify messages which can tolerate

further delay without violating latency constraints. This is common for windowed

operations, e.g., a WindowAggregation operator can tolerate delayed execution if a

message’s logical time is at the start of the window as the operator will only produce

output at the end of a window. Window operators are very common in our production

use cases.

Multiple-operator dataflow, Windowed operator. Consider M that targets a

windowed operator oM , Cameo is able to determine (based on dataflow semantics)

to what extent M can be delayed without affecting latency. This requires Cameo

to identify the minimum logical time (pMF
) required to trigger the target window

operator. We call pMF
frontier progress. Frontier progress denotes the stream progress

that needs to be observed at the window operator before a window is complete. Thus

a windowed operator will not produce output until frontier progresses are observed at

all source operators. We record the system time when all frontier progresses become

available at all sources as frontier time, denoted as tMF
.

Processing of a message M can be safely delayed until all the messages that belong in

the window have arrived. In other words when computing the start deadline of M , we

can extend the deadline by (tMF
− tM). We thus rewrite Equation 5.2 as:

ddlM = tMF
+ L− COM

− Cpath (5.3)

An example of this schedule was shown in schedule “d” of Figure 5.4. With query-

awareness, scheduler derives tMF
and postpones M1 and M3 in favor of M2 and M4.

Therefore operator o2 is prioritized over o1 to process M2 then M4.

The above examples show the derivation of priority for a LLF scheduler. Cameo also

supports scheduling policies including commonly used policies like EDF, SJF etc. In

fact, the priority for EDF can be derived by a simple modification of the LLF equations.

Our EDF policy considers the deadline of a message prior to an operator executing and

thus we can compute priority for EDF by omitting COM
term in Equation 5.3. For SJF

we can derive the priority by setting ddlM = COM
—while SJF is not deadline-aware

we compare its performance to other policies in our evaluation.

52

5.4.3 Mapping Stream Progress

For Equation 5.3 frontier time tMF
may not be available until the target operator is trig-

gered. However, for many fixed-sized window operations (e.g., SlidingWindow, TumblingWindow,

etc.), we can estimate tMF
based on the message’s logical time pM . Cameo performs two

steps: first we apply a Transform function to calculate pMF
, the logical time of the mes-

sage that triggers oM . Then, Cameo infers the frontier time tMF
using a ProgressMap

function. Thus tMF
= ProgressMap(Transform(pM)). We elaborate below.

Step 1 (Transform): For a windowed operator, the completion of a window at operator

o triggers a message to be produced at this operator. Window completion is marked by the

increment of window ID [118, 124], calculated using the stream’s logical time. For message

M that is sent from upstream operator ou to downstream operator od, pMF
can be derived

using pM using on a Transform function. With the definition provided by [124], Cameo

defines Transform as:

pMF
= Transform(pM) =

(pM/Sod + 1) · Sod Sou < Sod

pM otherwise
(5.4)

For a sliding window operator od, Sod refers to the slide size, i.e., value step (in terms

of logical time) for each window completion to trigger target operator. For the tumbling

window operation (i.e., windows cover consecutive, non-overlapping value step), Sou equals

the window size. For a message sent by an operator ou that has a shorter slide size than

its targeting operator od, pMF
will be increased to the logical time to trigger od, that is,

= (pM/Sod + 1) · Sod .

For example if we have a tumbling window with window size 10 s, then the expected

frontier progress, i.e., pMF
, will occur every 10th second (1, 11, 21 ...). Once the window

operator is triggered, the logical time of the resultant message is set to pMF
, marking the

latest time to influence a result.

Step 2 (ProgressMap): After deriving the frontier progress pMF
that triggers the next

dataflow output, Cameo then estimates the corresponding frontier time tMF
. A temporal

data stream typically has its logical time defined in one of three different time domains:

(1) event time [125, 126]: a totally-ordered value, typically a timestamp, associated with

original data being processed;

(2) processing time: system time for processing each operator [119]; and

(3) ingestion time: the system time of the data first being observed at the entry point of the

system [125, 126].

Cameo supports both event time and ingestion time. For processing time domain, M ’s

53

timestamp could be generated when M is observed by the system.

To generate tMF
based on progress pMF

, Cameo utilizes a ProgressMap function to

map logical time pMF
to physical time tMF

. For a dataflow that defines its logical time by

data’s ingestion time, logical time of each event is defined by the time when it was observed.

Therefore, for all messages that occur in the resultant dataflow, logical time is assigned by

the system at the origin as tMF
= ProgressMap(pMF

) = pMF
.

For a dataflow that defines its logical time by the data’s event time, tMF
6= pMF

. Our

stream processing run-time provides channel-wise guarantee of in-order processing for all

target operators. Thus Cameo uses linear regression to map pMF
to tMF

, as: tMF
=

ProgressMap(pMF
) = α · pMF

+ γ, where α and γ are parameters derived via a linear

fit with running window of historical pMF
’s towards their respective tMF

’s. E.g., For same

tumbling window with window size 10s, if pMF
occurs at times (1, 11, 21 . . .), with a 2s delay

for the event to reach the operator, tMF
will occur at times (3, 13, 23 . . .).

We use a linear model due to our production deployment characteristics: the data sources

are largely real time streams, with data ingested soon after generation. Users typically expect

events to affect results within a constant delay. Thus the logical time (event produced)

and the physical time (event observed) are separated by only a small (known) time gap.

When an event’s physical arrival time cannot be inferred from stream progress, we treat

windowed operators as regular operators. Yet, this conservative estimate of laxity does not

hurt performance in practice.

5.5 SCHEDULING MECHANISMS IN CAMEO

We next present Cameo’s architecture that addresses three main challenges:

1 How to make static and dynamic information from both upstream and downstream pro-

cessing available during priority assignment?

2 How can we efficiently perform fine-grained priority assignment and scheduling that scales

with message volume?

3 How can we admit pluggable scheduling policies without modifying the scheduler mech-

anism?

Our approach to address the above challenges is to separate out the priority assignment

from scheduling, thus designing a two-level architecture.This allows priority assignment for

user-defined operators to become programmable.To pass information between the two levels

(and across different operators) we piggyback information atop messages passed between

operators.

More specifically, Cameo addresses challenge 1 by propagating scheduling contexts with

54

messages. To meet challenge 2 , Cameo uses a two-layer scheduler architecture. The top

layer, called the context converter, is embedded into each operator and handles scheduling

contexts whenever the operator sends or receives a message. The bottom layer, called the

Cameo scheduler, interprets message priority based on the scheduling context embedded

within a message and updates a priority-based data structure for both operators and op-

erators’ messages. Our design has advantages of: (i) avoiding the bottleneck of having a

centralized scheduler thread calculate priority for each operator upon arrival of messages,

and (ii) only limiting priority to be per-message. This allow the operators, dataflows, and

the scheduler, to all remain stateless.

To address 3 Cameo allows the priority generation process to be implemented through

the context handling API. A context converter invokes the API with each operator.

5.5.1 Scheduling Contexts

Scheduling contexts are data structures attached to messages, capturing message priority,

and information required to perform priority-based scheduling. Scheduling contexts are

created, modified, and relayed alongside their respective messages. Concretely, scheduling

contexts allow capture of scheduling states of both upstream and downstream execution.

A scheduling context can be seen and modified by both context converters and the Cameo

scheduler. There are two kinds of contexts:

1. Priority Context (PC): PC is necessary for the scheduler to infer the priority of a

message. In Cameo PCs are defined to include local and global priority as (ID, PRIlocal,

PRIglobal, Dataflow DefinedF ield). PRIlocal and PRIglobal are used for applications to en-

close message priorities for scheduler to determine execution order, andDataflow DefinedF ield

includes upstream information required by the pluggable policy to generate message priority.

A PC is attached to a message before the message is sent. It is either created at a source

operator upon receipt of an event, or inherited and modified from the upstream message

that triggers the current operator. Therefore, a PC is seen and modified by all executions of

upstream operators that lead to the current message. This enables PC to address challenge 1

by capturing information of dependant upstream execution (e.g., stream progress, latency

target, etc.).

2. Reply Context (RC): RC meets challenge 1 by capturing periodic feedback from

the downstream operators. RC is attached to an acknowledgement message 2, sent by the

target operator to its upstream operator after a message is received. RCs provide processing

2A common approach used by many stream processing systems [7, 8, 9] to ensure processing correctness

55

feedback of the target operator and all its downstream operators. RCs can be aggregated

and relayed recursively upstream through the dataflow.

Cameo provides a programmable API to implement these scheduling contexts and their

corresponding policy handlers in context converters. API functions include:

1. function BuildCxtAtSource(Event e) that creates a PC upon receipt of an event

e;

2. function BuildCxtAtOperator(Message M) that modifies and propagates a PC

when an operator is invoked (by M) and ready to send a message downstream;

3. function ProcessCtxFromReply(Message r) that processes RC attached to an

acknowledgement message r received at upstream operator; and

4. function PrepareReply(Message r) that generates RC containing user-defined

feedbacks, attached to r sent by a downstream operator.

5.5.2 System Architecture

Figure 5.5a shows context converters at work. After an event is generated at a source

operator 1a (step 1), the converter creates a PC through BuildCxtAtSource and sends

the message to Cameo scheduler. The target operator is scheduled (step 2) with the priority

extracted from the PC, before it is executed. Once the target operator 3a is triggered (step

4), it calls BuildCtxAtOperator, modifying and relaying PC with its message to down-

stream operators. After that 3a sends an acknowledgement message with an RC (through

PrepareReply) back to 1a (step 5). RC is then populated by the scheduler with runtime

statistics (e.g, CPU time, queuing delays, message queue sizes, network transfer time, etc.)

before it is scheduled and delivered at the source operator (step 6).

Cameo enables scheduling states to be managed and transported alongside the data. This

allows Cameo to meet challenge 2 by keeping the scheduler away from centralized state

maintenance and priority generation. The Cameo scheduler manages a two level priority-

based data structure, shown in Figure 5.5b. We use PRIlocal to determine M ’s execution

priority within its target operator, and PRIglobal of the next message in an operator to order

all operators that have pending messages. Cameo can schedule at either message granularity

or a coarser time quanta. While processing a message, Cameo peeks at the priority of the

next operator in the queue. If the next operator has higher priority, we swap with the current

operator after a fixed time quantum (tunable).

56

(a) Scheduling contexts circulating between two operators.

(b) Cameo Scheduler Architecture. Operators sorted by global priority. Messages
at an operator sorted by local priority.

Figure 5.5: Cameo Mechanisms.

5.5.3 Implementing the Cameo Policy

To implement the scheduling policy of Section 5.4, a PC is attached to message M (denoted

as PC(M)) with fields as shown in Table 5.2.

Algorithm 5.1 demonstrates how Cameo performs context conversions. The core of Al-

gorithm 5.1 is CxtConvert, which generates PC for downstream message Md (denoted as

PC(Md)), triggered by PC(Mu) from the upstream triggering message. To schedule a down-

stream message Md triggered by Mu, Cameo first retrieves stream progress pMu contained in

57

ID PRIlocal PRIglobal Dataflow −DefinedF ield
IDM pMF

ddlMF
(pMF

, tMF
, L)

Table 5.2: Cameo Message Example.

Algorithm 5.1 Priority Context Conversion

1: function BuildCxtAtSource(Event e) . Generate PC for message Me at source
triggered by event e

2: PC(Me)← InitializePriorityContext()
3: PC(Me).(PRIlocal, PRIglobal)← (e.pe, e.te)
4: PC(Me)← ContextConvert(PC(Me), RClocal)
5: return PC(Me)

6: function BuildCxtAtOperator(Message Mn) . Generate PC for message Md at
an intermediate operator triggered by upstream message Mu

7: PC(Md)← PC(Mu)
8: PC(Md).(PRIlocal, PRIglobal)← PC(Mu).(pMF

, tMF
)

9: PC(Md)← ContextConvert(PC(Md), RClocal)
10: return PC(Md)

11: function CxtConvert(PC(M), RC). Calculating message priority based on PC(M), RC
provided

12: pMF
← Transform(PC(M).pM)

13: tMF
← ProgressMap(pMF

) . As in Section 5.4.3
14: if tMF

defined in stream event time then
15: ProgressMap.update(PC.tM , PC.pM) . Improving prediction model as in

Section 5.5.3
16: PC(M).pM , PC(M).tM ← pMF

, tMF

17: ddlM ← tMF
+ PC(M).L− RC.Cm − RC.Cpath

18: PC(M).(PRIlocal, PRIglobal)← (pMF
, ddlM)

19: function ProcessCtxFromReply(Message r) . Retrieve reply message’s RC and
store locally

20: RClocal.update(r.RC)

21: function PrepareReply(Message r) . Recursively update maximum critical path
cost Cpath before reply

22: if Sender(r) = Sink then
23: r.RC← InitializeReplyContext()
24: else r.RC.Cpath ← RC.Cm + RC.Cpath

58

PC(Mu). It then applies the two-step process (Section 5.4.3) to calculate frontier time tMF

using pMu . This may extend a message’s deadline if the operator is not expected to trigger

immediately (e.g., windowed operator). We capture pMF
and estimated tMF

in PC as message

priority and propagate this downstream. Meanwhile, pMu and tMu are fed into a linear model

to improve future prediction towards tMF
. Finally, the context converter computes message

priority ddlMu using tMF
as described in Section 5.4.

Cameo utilizes RC to track critical path execution cost Cpath and execution cost CoM . RC

contains the processing cost (e.g., CPU time) of the downstream critical path up to the

current operator, obtained via profiling.

5.5.4 Customizing Cameo: Proportional Fair Scheduling

We next show how the pluggable scheduling policy in Cameo can be used to support other

performance objectives, thus satisfying 3 . For instance, we show how a token-based rate

control mechanism works, where token rate equals desired output rate. In this setting, each

application is granted tokens per unit of time, based on their target sending rate. If a source

operator exceeds its target sending rate, the remaining messages (and all downstream traffic)

are processed with operator priority reduced to minimum. When capacity is insufficient to

meet the aggregate token rate, all dataflows are downgraded equally. Cameo spreads tokens

proportionally across the next time interval (e.g., 1 sec) by tagging each token with the

timestamp at each source operator. For token-ed messages, we use token tag PRIglobal, and

interval ID as PRIlocal. Messages without tokens have PRIglobal set to MIN VALUE. Through

PC propagation, all downstream messages are processed when no tokened traffic is present.

Figure 5.6: Proportional fair sharing using Cameo.

Figure 5.6 shows Cameo’s to-

ken mechanism. Three dataflows

start with 20% (12), 40% (24), and

40% (24) tokens as target inges-

tion rate per source respectively.

Each ingests 2M events/s, start-

ing 300 s apart, and lasting 1500

s. Dataflow 1 receives full capacity

initially when there is no competi-

tion. The cluster is at capacity after Dataflow 3 arrives, but Cameo ensures token allocation

translates into throughput shares.

59

5.6 EXPERIMENTAL EVALUATION

We next present experimental evaluation of Cameo. We first study the effect of differ-

ent queries on Cameo in a single-tenant setting. Then for multi-tenant settings, we study

Cameo’s effects when:

• Varying environmental parameters (Section 5.6.2): This includes: a) workload (ten-

ant sizes and ingestion rate), and b) available resources, i.e., worker thread pool size, c)

workload bursts.

• Tuning internal parameters and optimization (Section 5.6.3): We study: a) effect

of scheduling granularity, b) frontier prediction for event time windows, and c) starvation

prevention.

We implement streaming queries in Flare [17] (built atop Orleans [92, 93]) by using

Trill [123] to run streaming operators.We compare Cameo vs. both i) default Orleans

(version 1.5.2) scheduler, and ii) a custom-built FIFO scheduler. By default, we use the

1 ms minimum re-scheduling grain (Section 5.5.2). This grain is generally shorter than a

message’s execution time. Default Orleans implements a global run queue of messages us-

ing a ConcurrentBag [127] data structure. ConcurrentBag optimizes processing throughput

by prioritizing processing thread-local tasks over the global ones. For the FIFO scheduler,

we insert operators into the global run queue and extract them in FIFO order. In both

approaches, an operator processes its messages in FIFO order.

Machine configuration. We use DS12-v2 Azure virtual machines (4 vCPUs/56GB mem-

ory/112G SSD) as server machines, and DS11-v2 Azure virtual machines (2 vCPUs/14GB

memory/28G SSD) as client machines [128]. Single-tenant scenarios are evaluated on a sin-

gle server machine. Unless otherwise specified, all multi-tenant experiments are evaluated

using a 32-node Azure cluster with 16 client machines.

Evaluation workload. For the multi-job setting we study performance isolation under

concurrent dataflow jobs. Concretely, our workload is divided into two control groups:

• Latency Sensitive Jobs (Group 1): This is representative of jobs connected to user

dashboards, or associated with SLAs, ongoing advertisement campaigns, etc. Our work-

load jobs in Group 1 have sparse input volume across time (1 msg/s per source, with 1000

events/msg), and report periodic results with shorter aggregation windows (1 second).

These have strict latency constraints.

• Bulk Analytic Jobs (Group 2): This is representative of social media streams being

processed into longer-term analytics with longer aggregation windows (10 seconds). Our

Group 2 jobs have input of both higher and variable volume and high speed, but with

60

lax latency constraints.

Our queries feature multiple stages of windowed aggregation parallelized into a group of

operators. Each job has 64 client sources. All queries assume input streams associated with

event time unless specified otherwise.

Latency constraints. In order to determine the latency constraint of one job, we run

multiple instances of the job until the resource (CPU) usage reaches 50%. Then we set the

latency constraint of the job to be twice the tail (95th percentile) latency. This emulates

the scenario where users with experience in isolated environments deploy the same query

in a shared environment by moderately relaxing the latency constraint. Unless otherwise

specified, a latency target is marked with grey dotted line in the plots.

5.6.1 Single-tenant Scenario

In Figure 5.7 we evaluate a single-tenant setting with 4 queries: IPQ1 through IPQ4.

IPQ1 and IPQ3 are periodic and they respectively calculate sum of revenue generated by

real time ads, and the number of events generated by jobs groups by different criteria. IPQ2

performs similar aggregation operations as IPQ1 but on a sliding window (i.e., consecutive

window contains overlapped input). IPQ4 summarizes errors from log events via running

a windowed join of two event stream, followed by aggregation on a tumbling window (i.e.,

where consecutive windows contain non-overlapping ranges of data that are evenly spaced

across time).

From Figure 5.7a we observe that Cameo improves median latency by up to 2.7×and

tail latency by up to 3.2×.We also observe that default Orleans performs almost as well as

Cameo for IPQ4. This is because IPQ4 has a higher execution time with heavy memory

access, and performs well when pinned to a single thread with better access locality.

Effect on intra-query operator scheduling. The CDF in Figure 5.7b shows that Orleans’

latency is about 3× higher than Cameo. While FIFO has a slightly lower median latency,

its tail latency is as high as in Orleans. Cameo’s prioritization is especially evident in

Figure 5.7c, where dots are message starts, and red lines separate windows. We first observe

that Cameo is faster, and it creates a clearer boundary between windows. Second, messages

that contribute to the first result (colored dots) and messages that contribute to the second

result (grey dots) do not overlap on the timeline. For the other two strategies, there is a drift

between stream progress in early stages vs. later stages, producing a prolonged delay. In

particular, in Orleans and FIFO, early-arriving messages from the next window are executed

before messages from the first window, thus missing deadlines.

61

(a) (b)

(c)

Figure 5.7: Single-Tenant Experiments: (a) Query Latency. (b) Latency CDF. (c) Operator
Schedule Timeline: X axis = time when operator was scheduled. Y axis = operator ID color
coded by operator’s stage. Operators are triggered at each stage in order (stage 0 to 3). Job
latency is time from all events that belong to the previous window being received at stage 0,
until last message is output at stage 3.

62

5.6.2 Multi-tenant Scenario

(a) Varying ingestion rate of group 2 tenants (Bulk Analytics).

(b) Varying number of group 2 tenants (Bulk Analytics).

(c) Varying worker thread pool size.

Figure 5.8: Latency-sensitive jobs under competing workloads.

Figure 5.8 studies a control group of latency-constrained dataflows (group 1 LS jobs)

by fixing both job count and data ingestion rate. We vary data volume from competing

workloads (group 2 BA jobs) and available resources. For LS jobs we impose a latency

63

target of 800 ms, while for BA jobs we use a 7200s latency constraint.

Cameo under increasing data volume. We run four group 1 jobs alongside group 2

jobs. We increase the competing group 2 jobs’ traffic, by increasing the ingestion speed

(Figure 5.8a) and number of tenants (Figure 5.8b). We observe that all three strategies

(Cameo, Orleans, FIFO) are comparable up to per-source tuple rate of 30K/s in Figure 5.8a,

and up to twelve group 2 jobs in Figure 5.8b. Beyond this, overloading causes massive latency

degradation, for group 1 (LS) jobs at median and 99 percentile latency (respectively): i)

Orleans is worse than Cameo by up to 1.6 and 1.5× in Figure 5.8a, up to 2.2 and 2.8× in

Figure 5.8b, and ii) FIFO is worse than Cameo by up to 2 and 1.8× in Figure 5.8a, up to

4.6 and 13.6× in Figure 5.8b. Cameo stays stable. Cameo’s degradation of group 2 jobs is

small— with latency similar or lower than Orleans and FIFO, and Cameo’s throughput only

2.5% lower.

Effect of limited resources. Orleans’ [105] underlying SEDA architecture [129] re-

sizes thread pools to achieve resource balance between execution steps, for dynamic re-

provisioning. Figure 5.8c shows latency and throughput when we decrease the number of

worker threads. Cameo maintains the performance of group 1 jobs except in the most re-

strictive 1 thread case (although it still meets 90% of deadlines). Cameo prefers messages

with impending deadlines and this causes back-pressure for jobs with less-restrictive latency

constraints, lowering throughput. Both Orleans and FIFO observe large performance penal-

ties for group 1 and 2 jobs (higher in the former). Group 2 jobs with much higher ingestion

rate will naturally receive more resources upon message arrivals, leading to back-pressure

and lower throughput for group 1 jobs.

Effect of temporal variation of workload. We use a Pareto distribution for data volume

in Figure 5.9, with four group 1 jobs and eight group 2 jobs. (This is based on Figures 5.2a,

5.2c, which showed a Power-Law-like distribution.) The cluster utilization is kept under

50%.

High ingestion rate can suddenly prolong queues at machines. Visualizing timelines in

Figures 5.9a, 5.9b, and 5.9c shows that for latency-constrained jobs (group 1), Cameo’s

latency is more stable than Orleans’ and FIFO’s. Figure 5.9d shows that Cameo reduces

(median, 99th percentile) latency by (3.9×, 29.7×) vs. Orleans, and (1.3×, 21.1×) vs. FIFO.

Cameo’s standard deviation is also lower by 23.2× and 12.7× compared to Orleans and FIFO

respectively. For group 2, Cameo produces smaller average latency and is less affected by

ingestion spikes. Transient workload bursts affect many jobs, e.g., all jobs around t = 400

with FIFO, as a spike at one operator affects all its collocated operators.

Ingestion pattern from production trace. Production workloads exhibit high degree of

skew across data sources. In Figure 5.10 we show latency distribution of dataflows consuming

64

(a) Orleans Latency Timeline (b) FIFO Latency Timeline

(c) Cameo Latency Timeline

GrouS 1 (LS) GrouS 2 (BA)
102

103

104

105

La
te

nF
y

(m
s)

2rOeans)I)2 Cameo

(d) Latency Distribution

Figure 5.9: Latency under Pareto event arrival.

two workload distributions derived from Figure 5.2c: Type 1 and 2. Type 1 produces twice

as many events as Type 2. However, Type 2 is heavily skewed and its ingestion rate varies

by 200× across sources. This heavily impacts operators that are collocated. The success

rate (i.e., the fraction of outputs that meet their deadline) is only 0.2% and 1.5% for Orleans

and 7.9% and 9.5% for FIFO. Cameo prioritizes critical messages, maintaining success rates

of 21.3% and 45.5% respectively.

5.6.3 Cameo: Internal Evaluation

We next evaluate Cameo’s internal properties.

LLF vs. EDF vs. SJF. We implement three scheduling policies using the Cameo context

API and evaluate using Section 5.6.1’s workload. The three scheduling policies are: Least

Laxity First (LLF, our default), Earliest Deadline First (EDF), and Shortest Job First (SJF).

Figure 5.11 shows that SJF is consistently worse than LLF and EDF (with the exception of

query IPQ4– due to the lack of queuing effect under lighter workload). Second, EDF and

65

Figure 5.10: Spatial Workload Variation.

Figure 5.11: Cameo Policies. Left: Single query latency distribution. Right: Multi-Query
Latency Distribution.

LLF perform comparably.

In fact we observed that EDF and LLF produced similar schedules for most of our queries.

This is because: i) our operator execution time is consistent within a stage, and ii) operator

execution time is � window size. Thus, excluding operator cost (EDF) does not change

schedule by much.

Scheduling Overhead. To evaluate Cameo with many small messages, we use one thread

to run a no-op workload (300-350 tenants, 1 msg/s/tenant, same latency needs). Tenants

are increased to saturate throughput.

Figure 5.12 (left) shows breakdown of execution time (inverse of throughput) for three

scheduling schemes: FIFO, Cameo without priority generation (overhead only from priority

scheduling), and Cameo with priority generation and the LLF policy from Section 5.4 (over-

head from both priority scheduling and priority generation). Cameo’s scheduling overhead is

< 15% of processing time in the worst case, comprising of 4% overhead from priority-based

scheduling and 11% from priority generation.

66

Cameo
Finest

(no-op)

Batch
size 1

Batch
size

1000

Batch
size

5000

Batch
size

20000

Batch
size

80000
FIFO

Cameo w/o
priority

generation
Cameo

Priority
Scheduling

Priority
Generation

Figure 5.12: Cameo Scheduling Overhead.

Figure 5.13: Effect of Batch Size.

In practice, Cameo encloses a columnar batch of data in each message like Trill [123].

Cameo’s overhead is small compared to message execution costs. In Figure 5.12 (right),

under Section 5.6’s workload, scheduling overhead is only 6.4% of execution time for a local

aggregation operator with batch size 1. Overhead falls with batch size. When Cameo is

used as a generalized scheduler and message execution costs are small (e.g., with < 1 ms),

we recommend tuning scheduling quantum and message size to reduce scheduling overhead.

In Figure 5.13, we batch more tuples into a message, while maintaining same overall tuple

ingestion rate. In spite of decreased flexibility available to the scheduler, group 1 jobs’

latency is unaffected up to 20K batch size. It degrades at higher batch size (40K), due to

more lower priority tuples blocking higher priority tuples. Larger messages hide scheduling

overhead, but could starve some high priority messages.

To evaluate the effect of increasing the scheduling quantum, we evaluate Cameo’s per-

formance under varying scheduling quantum (Section 5.5.2) using workload described in

Figure 5.10. Figure 5.14 (Left) shows the latency distribution with all Type 1 and Type

2 jobs trigger dataflow output on the same stream progress (e.g., 10, 20, 30s ...), whereas

Figure 5.14 (Right) shows the result with jobs’s output triggered on interleaved stream

progress (e.g., job 1 on 10, 20, 30s etc., job 2 on 12, 22, 32s, etc.). The left figure reveals

the potential benefits of using coarser scheduling quantum, as resources are contended for

67

Figure 5.14: Effect of Varying Scheduling Quantum. Left: Jobs Triggered By Clustered
Stream Progress. Right: Jobs Triggered By Interleaved Stream Progress.

500 1000 1500 2000 25000.00

0.25

0.50

0.75

1.00
GrouS1(LS)

1000 2000 3000 4000

GrouS2(BA)

0.0 0.2 0.4 0.6 0.8 1.0
LateQFLes (Ps)

0.00

0.25

0.50

0.75

1.00

3e
rF

eQ
tLO

e

)I)2
CaPeo
CaPeo wLthout
4uery 6ePaQtLFs
2rOeaQs

Figure 5.15: Benefit of Query Semantics-awareness in Cameo.

by many high priority messages, using finest scheduling granularity causes longer latency

tail due to frequent context switches. However, a very large scheduling quantum (100ms)

can hurt Cameo’s performance by prohibiting the scheduler from preempting low-priority

operators that arrive early, creating head-of-line blocking for high priority messages.

Varying Scope of Scheduler Knowledge. If Cameo is unaware of query semantics

(but aware of DAG and latency constraints), Cameo conservatively estimates tMF
without

deadline extension for window operators, causing a tighter ddlM . Figure 5.15 shows that

Cameo performs slightly worse without query semantics (19% increase in group 2 median

latency). Against baselines, Cameo still reduces group 1 and group 2’s median latency by

up to 38% and 22% respectively. Hence, even without query semantic knowledge, Cameo

still outperforms Orleans and FIFO.

Effect of Measurement Inaccuracies. To evaluate how Cameo reacts to inaccurate

monitoring profiles, we perturb measured profile costs (COM
from Equation 5.3) by a normal

distribution (µ=0), varying standard deviation (σ) from 0 to 1 s. Figure 5.16 shows that

when σ of perturbation is close to window size (1 s), latency is: i) stable at the median, and

ii) modestly increases at tail, e.g., only by 55.5% at the 90th percentile. Overall, Cameo’s

performance is robust when standard deviation is ≤ 100ms, i.e., when measurement error is

68

500 750 1000 1250
0.0

0.5

1.0
GrouS1(LS)

500 1000 1500

GrouS2(BA)

σ Ln Ps
0
1
100
1000

0.0 0.2 0.4 0.6 0.8 1.0
LatencLes (Ps)

0.0

0.5

1.0
Pe

rc
en

tLl
e

Figure 5.16: Profiling Inaccuracy. Standard deviation in ms.

reasonably smaller than output granularity.

5.7 RELATED WORK

Streaming system schedulers. The first generation of Data Stream Management Sys-

tems (DSMS) [113, 130], such as Aurora [116], Medusa [131] and Borealis [59], use QoS

based control mechanisms with load shedding to improve query performance at run time.

These are either centralized (single-threaded) [116], or distributed [59, 131] but do not handle

timestamp-based priorities for partitioned operators. TelegraphCQ [114] orders input tuples

before query processing [132, 133], while Cameo addresses operator scheduling within and

across query boundaries. Stanford’s STREAM [115] uses chain scheduling [117] to minimize

memory footprints and optimize query queues, but assumes all queries and scheduler are exe-

cute in a single-thread. More recent works in streaming engines propose operator scheduling

algorithms for query throughput [134] and latency [135, 136]. Reactive and operator-based

policies include [134, 135], while [136] assumes arrivals are periodic or Poisson—however,

these works do not build a framework (like Cameo), nor do they handle per-event semantic

awareness for stream progress.

Modern stream processing engines such as Spark Streaming [10], Flink [99], Heron [8],

MillWheel [137], Naiad [138], Muppet [139], Yahoo S4 [140]) do not include native support

for multi-tenant SLA optimization. These systems also rely on coarse-grained resource shar-

ing [100] or third-party resource management systems such as YARN [32] and Mesos [33].

Streaming query reconfiguration. Online reconfiguration has been studied extensively [141].

Apart from Figure 5.3, prior work addresses operator placement [103, 142], load balanc-

ing [143, 144], state management [44], policies for scale-in and scale-out [37, 45, 51, 145].

Among these are techniques to address latency requirements of dataflow jobs [45, 51], and

ways to improve vertical and horizontal elasticity of dataflow jobs in containers [146]. The

performance model in [38] focuses on dataflow jobs with latency constraints, while we fo-

69

cus on interactions among operators. Online elasticity was targeted by System S [36, 41],

StreamCloud [49] and TimeStream [147]. Others include [2, 148]. Neptune [104] is a proac-

tive scheduler to suspend low-priority batch tasks in the presence of streaming tasks. Yet,

there is no operator prioritization within each application. Edgewise [149] is a queue-based

scheduler based on operator load but not query semantics. All these works are orthogonal

to, and can be treated as pluggables in, Cameo.

Event-driven architecture for real-time data processing. This area has been popu-

larized by the resource efficiency of serverless architectures [95, 97, 150]. Yet, recent propos-

als [109, 110, 151, 152] for stream processing atop event-based frameworks do not support

performance targets for streaming queries.

5.8 CONCLUSION

We proposed Cameo, a fine-grained scheduling framework for distributed stream pro-

cessing. To realize flexible per-message scheduling, we implemented a stateless scheduler,

contexts that carry important static and dynamic information, and mechanisms to derive

laxity-based priority from contexts. Our experiments with real workloads, and on Microsoft

Azure, showed that Cameo achieves 2.7 × −4.6× lower latency than competing strategies

and incurs overhead less than 6.4%.

70

CHAPTER 6: SCHEDULING PERFORMANCE CRITICAL STATEFUL
FUNCTIONS WITH DIRIGO

6.1 INTRODUCTION

Real-time data are known to bring unique challenges to dataflow engine design due to their

unpredictable volume, velocity, and arrival patterns. Handling real-time data requires elastic

resource provisioning to provide predictable service under the influence of many environmen-

tal variables. Most state-of-the-art real-time dataflow engines rely on application-level re-

configurations performed manually by end-users or resource managers, which re-compiles and

re-generates dataflow plans when resource overloads (or underloads) are detected [36, 37].

Recently, we have observed a trend that real-time data processing engines are evolving

to adopt serverless architecture [107, 153]. Contradict to most dataflow engines today,

which statically associate dataflow operator(s) with isolated resources, this approach models

dataflow operators as serverless functions and assigns resources dynamically for functions

with pending work.

This approach provides the obvious benefit of reducing resource idleness: The event-driven

architecture allows resources (e.g., CPUs) to be work-conserving, creating high resource

utilization [129]. Through this deployment paradigm, service providers gain fine-grained

access to pending work in the queue, allowing them to make better decisions in response to

user-level performance requirements or resolving performance bottlenecks without requiring

user-level intervention [4]. And therefore, users are not required to monitor and adapt their

dataflow deployment constantly.

While this architecture can fundamentally change how to achieve system elasticity within

real-time data processing engines, one of the significant issues with serverless platforms today

is the lack of native support to function states. As many real-time dataflow applications

contain operations requiring access to functions states, today’s serverless platforms treat

all functions as stateless. All function states used during an invocation are considered

ephemeral.Users who aim to reduce remote storage accesses prefer a longer instance lifetime

that allows function states to be reused across many requests [154]. For data-centric large-

scale applications, users need to rely on the maximum time span enforced by the provider

(900 seconds for AWS Lambda [155]) to maintain in-memory states [156]. As a result, users

are again required to explicitly reason about the trade-off between frequent cold starts or

resource idleness, making it challenging to deploy stateful dataflows that contain fine-grained,

state-accessing tasks that are difficult to predict.

Dirigo builds a serverless function processing stack designed for real-time dataflow appli-

71

cations based on actor-based architecture. It proposes that the future serverless runtime

systems should aim to perform elastic actions fully automatically without user involvement.

This framework should satisfy the following criteria: i) providing native support for address-

able function state ii) scheduling mechanism that enables fine-grained, decentralized function

dispatch iii) supporting user-intent awareness. Dirigo allows functions to communicate with

each other directly through messages, and proposes a scheduling framework to perform de-

centralized message scheduling. The design of Dirigo’s scheduling policies is guided by the

following problems:

1. How does user-specified performance intent translate to machine/worker choices for

pending messages to be executed.

2. How do accesses to states affect scheduling choices and how to reason about the trade-

off between load-balancing and state locality.

3. How should scheduler supports advanced stateful operations such as distributed ag-

gregation [157].

We also study a set of scheduling policies and the best scheduling policy for different types

of real-time workloads.

Because real-time systems are “fast-moving” with messages arriving continuously, the

queue states of workers change very quickly. Therefore it is prohibitive to design “static”

or “optimal” solutions to this scheduling problem, and our approach is to design fast and

efficient mechanisms and policies with Dirigo.

6.2 MOTIVATION

Real-time data processing systems have long been one of the major processing frameworks

adopted by many user scenarios. Traditionally designed for data streaming applications,

these systems must provide timely services for long-running applications consuming both

online and offline data streams. With low processing response time and close integration

with network data storage, today these systems are used for applications far beyond the

realm of stream processing, including event-driven applications, microservice pipelines, and

ML training/inference applications [109], etc. This emerging trend brings new challenges

in designing real-time data processing frameworks that serve as unified processing engines

for emerging applications, including adaptation to various user requirements, exploiting the

processing semantics of different applications, and adaptively managing application states.

Recent efforts that bring us closer to this vision attempt to build real-time data processing

72

frameworks using serverless architecture. This new design decouples operator logic from

operator deployment, leaving a significant challenge for service providers to optimize function

scheduling guided by user requirements for application performance.

We discovered that scheduler design targeting today’s serverless platforms could not be

directly applied to our scenario. Dirigo extends an actor-like architecture that we studied

in Chapter 5 and aims to exploit opportunities to parallelize operators without violating

processing semantics. The benefit of using an actor-like underlying framework is that each

function is associated with its addressable state(s), allowing future events that target the

same function to access its previously accessed state(s). Therefore, the end-user could assume

that states objects are present whenever the functions are invoked. However, the actor-based

framework uses single-threaded, lock-free processing semantics. As a result, the users need

to constantly reason about how to provision resources for each stage of their applications in

real-time, preventing elastic actions from being performed efficiently. Aiming to minimize

user effort, Dirigo performs dynamic scale-out and scale-in for operators if permitted by

processing semantics.

However, this design poses a different challenge to scheduler design: functions in Dirigo are

directly addressable, meaning that any function in the system can invoke another function

by its globally identifiable address by inserting a message in its target function’s queue.

Whereas for most serverless frameworks today, functions do not directly communicate with

each other, and all pending events are sent to a queue structure before being dispatched by

an external, logically centralized entity (e.g., [150]).

Dirigo requires a fully decentralized, per-worker fine-grained function scheduler that can

serve stateful dataflow applications with user intent. As Dirigo also manages function states

within the runtime, it could exploit state locality between invocations that target the same

function in its scheduling policy design1. In this chapter, we also attempt to determine

whether the state-of-the-art techniques for fine-grained task scheduling can be adapted and

improve policy design. To evaluate these design choices, we design a decentralized scheduler

and investigate scheduling strategies that meet the following criteria in this work:

• Ability to interpret user-intent and perform scheduler operation globally:

A scheduling policy should be able to translate user intent to scheduling decisions –

in Chapter 3 and Chapter 5 we discuss how different user intent should be interpreted

by scheduler. However, these solutions either rely on reactive application-level recofig-

uration (Chapter 3) or can only be applied locally at each machine in a centralized

1[158] can also suppport preservation of intermediate data through allocating communicating functions
to the same worker.

73

fashion (Chapter 5).

• Awareness of stateful operations: A scheduling policy should be designed to ac-

commodate function statefulness by being able to exploit memory locality as well as

in-order processing.

6.3 RELATED WORKS

In Dirigo we explore how to build a distributed, fine-grained scheduler framework that

can accommodate scheduling policies that could dynamically schedule stateful function in-

vocation by being aware of user intent. Scheduling dataflow applications as function DAGs

requires scheduler to perform resource planning both within and across application bound-

aries. Past works on SLA-aware function scheduling performs scheduling operations from

the application layer’s function handler, with only limited information of system-wide in-

formation [4]. Similar to Dirigo, [158] discusses a fully decentralized scheduler framework

that resides on each lambda worker. However, [158]’s can be seen as an application-layer

scheduling technique as the scheduler performs scale-out(-in) decisions while relying on the

underlying framework (AWS Lambda [150]) to map functions to workers. Dirigo, on the

other hand, exploits recurring tasks with performance targets.

Most works focusing on resource provisioning for serverless architecture assume that func-

tion scheduling can be performed with (semi-) global centralized entities. The schedul-

ing framework proposed by [159] supports latency SLA performs laxity-aware scheduling

for serverless functions. However, its laxity-aware scheduling is performed locally at each

work pool in a centralized manner. [159] also supports load-balancing performed reactively

based on queuing metrics, while Dirigo focuses on proactively schedules function requests

before processing. A platform such as [151] adopts a bottom-up approach by sending tasks

to pre-designated workers and offload requests to the global scheduler when the worker is

overloaded. This is similar to our optimistic offloading scheduling from the perspective of

scheduling philosophy, but we explore a fully decentralized approach where no global view

could be obtained. [160] discusses QoS aware scheduling for serverless functions. It de-

velops a client-side scheduler that adaptively dispatches function requests to a black-boxed

serverless framework. Whereas in Dirigo we discuss function scheduling performed within

the serverless runtime. As a result, both user-specified intent and resource allocation within

the cluster is visible to the scheduler.

Distributed fine-grained scheduling has been explored before serverless computing plat-

forms have emerged. [161] explores a fully decentralized scheduler design where workers

74

obtain no global view of resource usage for the entire cluster. It uses reservation-based

scheduling, derived from Power-of-Two [162] scheduling scheme, which places tasks reserva-

tions in multiple candidate worker queues and waits for the first available worker to fetch

and execute the task. Similar scheduler design that is also inspired by Power-of-Two scheme

includes [163]. In Dirigo we adopt similar philosophy in our dynamic-binding scheduling

policies, while combining priority/laxity awareness into our approach. fine grained schedul-

ing [164] (long short jobs, randomized stealing).

6.4 TARGET WORKLOADS

Dataflow Applications: Dirigo framework supports real-time data processing applications

composed of dataflows of user-implemented event-driven functions. This chapter explores

how Dirigo works with real-time data processing applications that contain operators that

utilize Dirigo’s in-memory state storage. In particular, we investigate two scenarios: i)

dataflow applications that leverage the in-memory state store as a data cache to speed

up data access; and ii) dataflow applications with streaming aggregation operators that

perform window aggregations on a single, in-ordered real-time data stream. In the former

scenario, we investigate how different scheduling policies would influence applications that

try to balance between achieving load-balancing and preserving data locality. In the latter

scenario, we explore using different scheduling policies to perform automatic parallelization

of single-threaded stateful operators.

Capturing message dependencies: The entire Dirigo system ensures the following de-

pendencies are satisfied: i) when incoming messages have timestamps, Dirigo executes them

in order of timestamps— thus any dependencies captured by timestamps are also satisfied

by Dirigo; and ii) when upstream messages generate downstream messages, the former are

executed completely before the latter start execution. In particular, i) is in fact satisfied by

the underlying channel delivery framework in Dirigo.

6.5 SCHEDULER DESIGN

This chapter introduces the architecture of Dirigo’s scheduler and the scheduling API that

we use to implement scheduling policies.

75

Figure 6.1: Dirigo architecture.

6.5.1 Scheduler Architecture

All dataflow applications in Dirigo are composed of a DAG of functions containing user-

specified message handling logic. When a message is received, the scheduler finds the target

function specified by the message target function address by loading the corresponding func-

tion with all its dependencies by creating a function activation. Once the execution finishes,

the activation is recycled and used for future messages. At any given time, the number of

function activations is less or equal to the number of workers within each machine.

Once the function DAG is submitted, each function within the DAG is registered to every

worker in the system before execution starts. Therefore in Dirigo, a target function can be

triggered at any worker where the function has registered. Dirigo achieves message scheduling

by creating bindings between user-specified virtual function addresses with function workers.

Figure 6.1 illustrates Dirigo’s architecture. Beyond data messages exchanged for function

processing, Dirigo uses scheduler messages to implement communication protocols to carry

out scheduling operations.

Dirigo does not use a standalone scheduler thread to manage message execution, and all

scheduling operations are triggered by messages. All messages received by a worker pass

through a series of scheduling API functions that potentially trigger scheduling operations.

For scheduling operations that need to be carried out by scheduling policy, the scheduling

API can also create scheduler messages that specify actions to be performed and define how

receiving workers should handle these messages.

76

Each worker manages both function class loaders that have been registered locally, and

data object handles created during execution. Dirigo supports both heap memory backend

and Redis [165] remote backend. For remote storage backend, users can use a global identi-

fiable state name to access the same object despite the physical location where the function

is invoked. For heap storage backend, the state object is non-fault-tolerant and is accessible

within the scope of each worker, meaning that only the functions invoked on the same worker

can share a state handle that points to the same state object.

6.5.2 Scheduling API

Figure 6.2: Scheduling API and types of messages defined in Dirigo.

We depict the scheduling API in Figure 6.2. The scheduling policy should first spec-

ify the work queue to hold messages through createWorkQueue(). It then defines the

actions before the message is inserted into the work queue (through enqueue(Message

message)), before (through preApply(Message message) and after execution (through

77

postApply(Message message) of a message, and before a downstream message is sent

(through prepareSend(Message message)).

The scheduling policy can also specify whether to create a scheduler message and the

handling mechanism within each scheduling API function. A scheduler message can target

any function that resides on any workers in the system or targets any workers without

specifying the function address. Figure 6.2 also specifies the types of messages that we

use to implement scheduling policies. Within these message types, SCHEDULE REQUEST and

SCHEDULE REPLY are the main types of scheduler messages we use to propagate scheduling

information and scheduling decisions. The data types transported by these messages are

customizable.

6.5.3 Customizing Priority-based Message Queue

Dirigo allows a scheduling policy to specify the message queue used by the policy. For a

latency-sensitive dataflow application, Dirigo associates each message with a deadline that

ensures the end-to-end job latency does not exceed expectations. Unless otherwise specified,

we use the priority assignment strategy in [4] to assign priority to messages for a policy that

targets latency-constraint applications, and we order all messages using Earliest-Deadline-

First (EDF) [101] policy within each worker queue. Checking whether a worker could insert

a message without introducing violations for the message itself or existing messages in the

queue requires traversing the entire queue. To speed up this process, we use minimum laxity

priority queue to track the minimum laxity of any messages that rank lower than a given

message. Inserting a message M only influences messages in the queue with lower priorities

thanM . Therefore, to check whether inserting a messageM would cause potential violations,

we search whether there is a lower-prioritized message with a laxity value that is shorter or

equal to M ’s execution cost. Minimum laxity priority queue achieves this goal by mapping

each message m to the minimum-laxity of any message whose priority is lower than m.

This process takes O(log n) due to binary search. Maintaining a laxity-based queue involves

updating the minimum laxity of every index upon queue insertion and deletion, which could

cost O(n) in the worst case. To speed up this process, we only track the position in the

priority queue where the minimum laxity changes, meaning that the minimum laxity queue

is monotonically increasing. We list the algorithms of these operations in Algorithm 6.1.

Algorithm 6.1 Minimum-Laxity Priority Queue

Require: workQueue, laxityMap

78

Algorithm 6.1 Minimum-Laxity Priority Queue (cont.)

. workQueue maps each message to its current laxity, which is updated when messages

are added or removed from the queue. laxityMap maintains the mapping between messages

and minimum laxity of all lower-prioritized messages. laxityMap only keeps one entry (i.e.,

the lowest prioritized message) for each minimum laxity value.

1: function LaxityCheck(Message M)

2: if workQueue.isEmpty() then

3: return M.Priority −M.getCost() ≥ currentT ime

4: floorEntry ← workQueue.floorEntry(M.priority) . Binary search for the

message laxity pair that has greater or equal to M.priority

5: ecTotal← floorEntry.priority − floorEntry.getV alue(). Get total execution cost

of all messages that have higher priorities.

6: if ecTotal ≤M.getLaxity() then

7: ceilingEntry ← laxityMap.ceiling(M.priority) . Binary search for the first

entry that have less priority than M.priority

8: if ceilingEntry is null OR ceilingEntry.getLaxity() > M.getCost() then

9: return true

10: return false

11: function Add(Message M)

12: if workQueue.isEmpty() then

13: workQueue.add(M,M.getLaxity())

14: workQueue.add(M,M.getLaxity())

15: else

16: minLaxitySoFar ←MAX LONG

17: minLaxityHead←MAX LONG

18: laxity ←M.getLaxity()

19: insert← false

20: for M ′ in workQueue.descending() do

21: if M ′.getPriority() > M.getPriority() then

22: updatedLaxty ← workQueue.get(M ′)−M.getCost()

23: workQueue.get(M ′)← updatedLaxity . Deduct time budget for all

messages that have lower priority

24: if minLaxitySoFar > updatedLaxity then

25: minLaxitySoFar ← updatedLaxity

79

Algorithm 6.1 Minimum-Laxity Priority Queue (cont.)

26: laxityMap.put(M ′, updatedLaxity)

27: if updatedLaxity < minLaxityHead then

28: minLaxityHead← updatedLaxity

29: else

30: laxity ← laxity −M ′.getCost() . Deduct time budget from message to

be added if the message in queue has higher priority

31: if minLaxityHead > laxity then

32: insert← true

33: headLaxityMap← laxityMap.headMap(M)

34: for MarkerM in laxityMap.headMap(M) do

35: if laxityMap.get(MarkerM) >= laxity then

36: laxityMap.remove(MarkerM) . Remove entry with higher priority with

higher laxity

37: if insert is true then

38: laxityMap.put(M, laxity)

39: workQueue.add(M, laxity)

40: return insert

41: function Poll(Message M)

42: poll = null

43: if workQueue.size is 0 then

44: return poll

45: poll = workQueue.poll()

46: if laxityMap.has(poll) then

47: laxityMap.remove(poll)

48: ec = poll.getCost()

49: for queuedMsg in workQueue do

50: updatedLaxity = workQueue.get(queuedMsg) + ec

51: workQueue.set(updatedlaxity)

52: if laxityMap.has(poll) then

53: laxityMap.update(poll, updatedLaxity)

54: return poll

80

6.6 SCHEDULING POLICIES

In this work, we investigate how to design scheduling policies that help runtime achieve

user-specified performance targets and evaluate how different design decisions influence per-

formance. Specifically, we conduct an initial investigation on how different scheduling policies

influence performance of stateful dataflow applications with user-specified latency targets.

6.6.1 Serving Latency-sensitive Stateful Functions

Dynamically scheduling stateful functions with latency target requires the scheduler to

obtain information of all available resources and be able to estimate whether a request can

satisfy its performance target once a scheduling decision is made. Dirigo performs scheduling

by creating bindings between user-specified target function addresses and function workers.

Specifically, we split all scheduling policies into three categories: dynamic-binding scheduling,

optimistic offloading scheduling, and static-binding scheduling:

• Static-binding Scheduling (SBS): A static-binding scheduling (SBS) policy creates

a fixed binding between the message’s target function address and a physical worker

in the cluster. It is the default scheduling strategy used by frameworks such as [166].

Static-binding scheduling allows all messages targeting a single function address to be

processed in a single-threaded fashion. For stateful functions, function states objects

can be stored locally without being explicitly transferred. The downside of this ap-

proach is that messages targeting the same function address cannot be parallelized,

leading to load imbalance among workers.

• Dynamic-binding Scheduling (DBS): A dynamic-binding scheduling (DBS) pol-

icy does not create a static association between a message’s target function address and

the physical worker that executes this message. The targeted worker is determined once

the message is created before the message is dispatched. The state-of-the-art strategy

is the Power-of-Two choices technique [162], implemented as a part of a fine-grained,

distributed scheduler in [161, 163]. It is a well-known technique that tackles workload

skew among workers and provides good load-balancing within a cluster. However, this

category of policies does not exploit state locality and may require an explicit transfer

of states when the unction is triggered.

• Optimistic Offloading Scheduling (OOS): An optimistic offloading scheduling

(OOS) assumes a static binding between the message’s target function address and

the physical worker that executes the message. The upstream message sender (client

81

or upstream function) optimistically assumes a request message will be completed

by meeting its latency target. The target function keeps gauging its pending queue

and offloading messages that cannot be executed before its deadline by seeking a new

physical worker to bind. For stateful function, these policies find a middle ground

between DBS and SBS policies by favoring physical worker that potentially holds

function states used processing a message, while only offloading messages while nec-

essary. However, the flexibility to balance locality awareness and load balancing does

come with a cost: OOS could lead to scheduling overhead for fine-grained, heavily

skewed workload that targets a single function address and the worker’s scheduler is

required to perform all scheduling operations.

We summarize the types of scheduling polices in Table 6.1.

Categories of Scheduling Policies
Scheduling Types Locality

Awareness
Load Bal-
ancing

Scheduler
Overhead

Dynamic-binding scheduling [162] Low High Low
Static-binding scheduling [4] High Low Low
Optimistic offloading scheduling (this
work)

Medium Medium High

Table 6.1: Types of scheduling policies.

6.6.2 Scheduling Policies

In this chapter we explain scheduling policies we explore in detail. Figure 6.3 summarizes

a hierarchy of available policies we describe.

Static-binding Scheduling (SBS): For SBS policies, we utilize the default binding tech-

nique [166] where all messages are sent to a worker identified by target address ID hash.

Through SBS, the user could assume that the message will be invoked on the same physical

worker. In Dirigo, the worker maintains state objects accessed by previously invoked mes-

sages. When function object cache is enabled (assuming no eviction), the object will present

in the cache once first accessed. Then all future state access (with the same state ID) will

be resolved locally. All messages received on the same worker are ordered by its message

priority, similar to the approach described in [4]. We denote this policy as PriorityBased.

Dynamic-binding Scheduling (DBS): For DBS policies, we explore two scheduling poli-

cies: QueueBasedDirect and LaxityBasedDirect. QueueBasedDirect simulates a default

power-of-two-choices scheduling policy by first selecting two random candidate workers, then

82

Figure 6.3: List of Scheduling Policies. We focus on scheduling policies marked in red in
this chapter.

sending SCHEDULE REQUEST to both workers, and finally waiting for SCHEDULE REPLY that

contains current queue sizes. QueueBasedDirect selects candidate that has a shorter queue

length. LaxityBasedDirect, on the other hand, is a variation to QueueBasedDirect where

SCHEDULE REQUEST contains the estimated priority and laxity information for a message.

The candidate worker performs a laxity check based on the priority/laxity pair received,

providing an estimation on whether the latency target can be satisfied (using the priority

queue structure described in Chapter 6.5.3). SCHEDULE REPLY contains a boolean value on

whether the message can be accommodated without leading to performance target viola-

tion.The sender chooses a candidate based on this response — if both candidates reply with

the same responses, the sender makes its decision based on the candidates’ queue length.

The pending message is buffered until both SCHEUDLE REPLYs are received so that no further

processing is blocked.

Optimistic Offloading Scheduling (OOS) For OOS, all messages assume a static bind-

ing between function address and target worker, which we call the lessor of the function.

If all messages in the queue are expected to meet their deadlines, all messages are directed

to the function lessor and executed as-is. When the lessor detects a potential violation, the

scheduler takes action to offload messages to other workers, which we call lessees.

We divide the OOS policies into two categories, based on the types of leasing requests

sent by a function when a potential deadline miss is detected.

• Forward-first strategies perform scheduling action greedily (i.e., by forwarding mes-

sages to potential candidate lessee directly) and wait for the lessee’s response deter-

mining whether a message is scheduled successfully.

83

102 103 104

Latencies (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

til
e

FM: false RL: true
FM: true RL: true
FM: false RL: false
FM: true RL: false

(a) 1RTT-RejectSend

102 103 104

Latencies (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e

FM: false RL: true
FM: true RL: true
FM: false RL: false
FM: true RL: false

(b) 1RTT-AcceptAndCheck

Figure 6.4: Forward-first methods: Comparing effect of four parameters tuning
RANDOM LESSEE (RL) and FORCE MIGRATE (FM). The policy selects potential lessees randomly
when RL is set to True, and selects lessees with shortest queue when RL is set to false.

• Check-first strategies require a lessor function sending a request to a potential lessee

and checks reply before the scheduler makes a scheduling decision and dispatches the

message.

Forward-first strategies require only one round-trip time (RTT) while Check-first strategies

require at least 2 RTTs to complete each scheduling action. Under the Forward-first strategy

group, we explore two scheduling policies: 1RTT-AcceptAndCheck and 1RTT-RejectSend.

1RTT-AcceptAndCheck adopts an accept-and-check approach, where messages are inserted

into the work queue. The policy later determines whether to take scheduling action by exam-

ining the work queue. On the other hand, 1RTT-RejectSend adopts a reject-and-reallocate

approach, where the scheduler takes action before the message is inserted into the work

queue, i.e., all successfully inserted messages will be processed without being reallocated.

A forward-first strategy uses the following preset parameters:

• FORCE MIGRATE specifies a forwarded message is required to be executed on lessee

activation (when set to true), or lessee activation is required to respond whether such

message can be executed locally.

• RANDOM LESSEE specifies whether the lessee activation is selected at random. When

specified as false, the scheduler chooses the candidate lessee that has the shortest queue

size.

Figure 6.4 shows the comparison of variations for two policies: 1RTT-RejectSend and

84

1RTT-AcceptAndCheck. We apply 128 parallel data sources. Each source sends messages

targeting a single function address, and we observe how the scheduler offloads messages from

the designated lessor. For each policy, we compare four different settings. Both Figure 6.4a

and Figure 6.4b show that disabling RANDOM LESSEE (and selecting lessee with a shorter

queue) does not provide performance benefit over random selection in this scenario. Our

queue-based lessee selection mechanism tracks lessee queue size lazily, and the workers could

make scheduling decisions on the stale information when the task granularity is small. As we

only have one worker in the cluster that serves as the lessor to all messages, queue-based lessee

selection does not provide additional performance benefits. On the other hand, Figure 6.4a

shows that FORCE MIGRATE has little effect on performance as both policy variances use

the same priority queue structures and the lax latency constraints set by the application.

Whereas for 1RTT-AcceptAndCheck (Figure 6.4b), FORCE MIGRATE has a more substantial

effect on dataflow latency (increases by 40%). This effect is caused by significantly fewer

queue operations (e.g., laxity checks) during requesting processes.2 Both policies provide

similar levels of success rates achieving latency constraints.

To further demonstrate the effect of forced migration, we apply an increasingly strict la-

tency target and observe changes in latency distribution, as shown in Figure 6.5. When

FORCE MIGRATE is enabled, 1RTT-AcceptAndCheck and 1RTT-RejectSend behave similarly

(Figure 6.5a and Figure 6.5c), and the job latency decreases as we tighten the latency con-

straints. When FORCE MIGRATE is disabled, performance is only influenced significantly (with

median latency increasing by 10% and tail latency increasing by 8×) when the performance

target is strict (i.e., 5000 ms), as most forwarded messages are rejected and executed locally

for 1RTT-RejectSend (Figure 6.5b). For the rest of the settings, FORCE MIGRATE has little

influence on performance as few messages are rejected by lessor workers when performance

constraint is lax. For 1RTT-AcceptAndCheck (Figure 6.5b), disabling FORCE MIGRATE causes

overall latency to increase due to more expensive queue operations as described above. Simi-

lar to 1RTT-RejectSend, we also observe a substantial latency increase (with median latency

increasing by 4% and tail latency increasing by 15×) when the latency constraint is strict

(5000 ms).

Under the Check-first category, we explore one base scheduling policy: 2RTT-Sequential

and its two variations: 2RTT-Pipelined and 2RTT-Parallel. These policies perform a vio-

lation check after message execution. If a scheduling action is required, the scheduler sends

out SEARCH RANGE number of scheduling requests to different candidate lessees. It then de-

termines whether all violations should be relocated to the lessor worker(s) once a response

21RTT-AcceptAndCheck with force execution uses a default priority queue that contains no laxity infor-
mation.

85

102 103 104

Latencies (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

til
e

5000
10000
15000
20000
25000

(a) 1RTT-RejectSend force migration

102 103 104

Latencies (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e

5000
10000
15000
20000
25000

(b) 1RTT-RejectSend

102 103 104

Latencies (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e

5000
10000
15000
20000
25000

(c) 1RTT-AcceptAndCheck force migration

102 103 104 105

Latencies (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e

5000
10000
15000
20000
25000

(d) 1RTT-AcceptAndCheck

Figure 6.5: Forward-first methods: Scheduling behaviors under increasingly strict perfor-
mance target.

is received. Unlike Forward-first policies, Check-first policies avoid blindly reallocating mes-

sages by first performing a laxity check with the priority/laxity pair. 2RTT-Sequential

dispatches all violation messages to one lessor worker and waits for REPLY REQUIRED amount

of replies before deciding whether to relocate messages. 2RTT-Pipelined is a variation policy

of 2RTT-Sequential. This policy waits for SEARCH RANGE responses to complete a schedul-

ing action while also starting a new violation search once REPLY REQUIRED replies from the

previous round are received. 2RTT-Parallel dispatches parallel requests when violations are

determined. Violations are partitioned to SEARCH RANGE different chunks, and each chunk is

dispatched to one lessee worker that responds positively to the request. The scheduler keeps

track of all pending messages and processes these messages locally if a negative response(s) is

received. Figure 6.6 applies 2RTT-Parallel with increasing SEARCH RANGE. We observe that

86

request latency decreases as we expand SEARCH RANGE due to the fewer requests we dispatch

to a single lessee, potentially creating a workload hot spot. This behavior is especially true

when we increase SEARCH RANGE from 1 to 2, with 16× improvement on median latency and

success rate increases by 0.09. As we keep increasing SEARCH RANGE (beyond 1 workers), the

benefit of exploring more candidates starts decreasing as the marginal benefit created by

additional candidate lessee starts to diminish.

1 2 4 8 16 32
Number of lessees searched

0

20000

40000

60000

80000

100000

M
ed

ia
n

La
te

nc
ie

s (
m

s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s R

at
e

Figure 6.6: Check-first methods: median latency
distribution and success rates change while using
2RTT-Parallel with increasing number of candi-
dates explored.

Our micro-benchmark finds that

Forward-first (1RTT) approaches per-

form generally better than Check-first

(2RTT) approaches. For this work, we

choose 1RTT approaches as our default

approaches for OOS policies, and we

plan to explore Check-First approaches

in our future work.

Figure 6.7 illustrates the proto-

cols of communication among work-

ers, initiated by the lessor worker,

using timelines while applying the

following four scheduling policies re-

spectively: LaxityBasedDirect (Fig-

ure 6.7a), 1RTT-AcceptAndCheck (Fig-

ure 6.7c), 1RTT-RejectSend (Fig-

ure 6.7b), and 2RTT-Parallel (Fig-

ure 6.7d).

6.7 EVALUATIONS

6.7.1 Cluster Setup

We build Dirigo within Flink Statefun[166] framework. We deploy all experiments through

Emulab cluster. Each cluster contains 32 D430 nodes (16 2.4Hz cores, 64GB memory, 10GB

NICs). All dataflow applications have a default parallelism of 128, and our runtime is set

up with 128 workers in total. We use 16 D430 nodes for Redis instances.

87

(a) LaxityBasedDirect (b) 1RTT-RejectSend

(c) 1RTT-AcceptAndCheck (d) 2RTT-Parallel

Figure 6.7: Scheduler communication in timelines by applying different scheduling policies
in Dirigo.

88

6.7.2 Controlled Dataflow

1 2 3 … n

1 2 3 … n

… Clients

Servers

Logical Dataflow Physical Dataflow

Distributed
Storage Backend

Default Parser
Function

Controlled
Forwarding
Function

Server
Boundary

Figure 6.8: Default Workload.

For the controlled dataflow experiment,

we apply a set of concurrent running two-

staged dataflows where the stage 1 function

sends messages to a designated stage 2 func-

tion (as shown in Figure 6.8). To create

an accurate estimation of execution cost, we

control the execution time of each function

invocation. We also control request skew-

ness by generating stage 2 requests that ac-

cess state objects forming a Zipfian distri-

bution. By default, each application can

generate requests for Nobjects objects, where

Nobjects equals the number of workers in to-

tal. Each object is associated with one

worker, and the target worker is chosen based on the requested object. For a dataflow

application that uses local state storage as cache space, we set the number of states stored

at each worker to equal the total number of dataflows. As a result, each dataflow applica-

tion can store one object on average on each worker. Here we attempt to create a read-only

workload where a state fetch is forced when a function is assigned to a worker(s) that have

not previously served a request targeting the same address. The default state object size

is 512 bytes. For comparison, we perform the same experiment with an identical setting

without state object access. This setting simulates a scenario where no storage constraint

is enforced, and all objects can be accessed locally, where state accesses do not influence

request latency.

DBS is preferable for large, stateless tasks, while OOS performs better for small,

stateful tasks: We apply 10ms task execution time to all functions invocations. Figure

6.9 shows end-to-end latency using four scheduling policies in Dirigo: two OOS policies:

1RTT-AcceptAndCheck and 1RTT-RejectSend, as well as two DBS policies: QueueBasedDirect

and LaxityBasedDirect. We vary the skewness of requests by varying the skew factor from

0.1, 1, to infinite3. Figure 6.9a and Figure 6.9b show latency distribution of all requests with-

out and with state object accesses, respectively. Despite the type of scheduling policy being

applied, we observe that latency (both median and tail) increases due to the increasingly

uneven distribution of workload. Despite triggering more remote state accesses, the DBS

3When skew factor is infinite, all requests are directed to the same worker.

89

skew-0.1 skew-1 skew-infinite
Skewness

0

5000

10000

15000

20000

25000

La
te

nc
y

(m
s)

1RTT-AcceptAndCheck
1RTT-RejectSend
LaxityBasedDirect
QueueBasedDirect

(a) No state object accesses.

skew-0.1 skew-1 skew-infinite
Skewness

0

5000

10000

15000

20000

25000

La
te

nc
y

(m
s)

1RTT-AcceptAndCheck
1RTT-RejectSend
LaxityBasedDirect
QueueBasedDirect

(b) With state object accesses.

Figure 6.9: OOS vs DBS policies applied to controlled dataflows with increasing degree of
skewness toward target functions.

policies are more robust against workload skew as the state operation overhead is relatively

small compared to function execution time. To show how the comparison between state

operation and scheduling granularity4 can influence the requests’ latency distribution, we

perform the experiments with fixed skewness (0.1) with decreasing scheduling granularity in

Figure 6.10.

10ms-50000us 1ms-5000us 1ms-2500us
Skewness

0

5000

10000

15000

20000

25000

La
te

nc
y

(m
s)

1RTT-AcceptAndCheck
1RTT-RejectSend
LaxityBasedDirect
QueueBasedDirect

(a) No state object accesses.

10ms-50000us 1ms-5000us 1ms-2500us
Skewness

0

5000

10000

15000

20000

25000

La
te

nc
y

(m
s)

1RTT-AcceptAndCheck
1RTT-RejectSend
LaxityBasedDirect
QueueBasedDirect

(b) With state object accesses.

Figure 6.10: OOS vs DBS with decreasing scheduling granularity. Each category is denoted
by the function invocation cost and interval between requests.

Figure 6.10 shows how varying scheduling granularity influences default workload running

4It can be determined by request rate and function execution time.

90

without (in Figure 6.10a) and with (in Figure 6.10b) state object accesses. Compared to the

longer function invocation shown in Figure 6.9, Figure 6.10 demonstrates workloads where

state operations become a more dominant factor towards latency distribution, as we observe

latency increases slightly for all workloads after state accesses are applied. Meanwhile,

we observe that the OOS policies perform better when task granularity is small – this is

because the OOS policies do not require communication between local schedulers when

latency targets are determined to be met. For fine-grained (e.g., 1 ms) function invocations,

OOS policies trigger scheduling operations lazily, and the scheduler can accumulate more

messages (comparing to longer tasks) given a fixed latency target. Meanwhile, both DBS

policies force 2 RTTs to dispatch all messages. For fine-grained tasks, this communication

becomes more expensive than overhead created by queue maintenance and potential load

imbalances using OOS approaches.

6.7.3 Social Network Micro Service Simulation

1 2 3 … n

1 …

… Clients

Servers

Physical Dataflow

ComposePo
st

ReadHomeTimeli
ne

ReadUserTimelin
e

Storage Backend

1 1 2 2 3 2 2 3 n n n
…

Logical Dataflow

Figure 6.11: Social Network Microservice
Workload.

We simulate Social Network Microservice

from DeathStarBench [167]. This work-

load captures three types of user opera-

tions performed by social network microser-

vices, as shown in Figure 6.11. We build a

dataflow DAG that contains a parser func-

tion triggered by every event batch sent

by each client. The parser functions han-

dle event batch by sending each request

to one of the downstream operator func-

tions: i) ComposePost handles a write re-

quest by writing a post content to remote

storage as well as post owners’ and their

followers’ timeline; ii) ReadUserTimeline

reads the latest posts from all followers; iii)

ReadHomeTimeline reads the latest timeline posted by a specific user. The data objects that

have been written/read during invoking functions would be temporarily stored in the local

storage, and the local storage evicts old objects based on Least-Recently-Used (LRU) policy.

For non-skewed web-access workload, LaxityBasedDirect is preferable when no

cache is present, while 1RTT-AcceptAndCheck is preferable with caching enabled.

We compare two OOS policies and two DBS policies with default PriorityBased scheduling

91

0 5000 10000 15000 20000 25000 30000
Latencies (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

til
e

QueueBasedDirect
LaxityBasedDirect
1RTT-RejectSend
1RTT-AcceptAndCheck
PriorityBased

(a) Redis-only state storage.

0 2000 4000 6000 8000 10000 12000
Latencies (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e

PriorityBased
1RTT-RejectSend
LaxityBasedDirect
QueueBasedDirect
1RTT-AcceptAndCheck

(b) Local object caches with Redis state backup.

Figure 6.12: SBS, DBS and OOS policies using social network graph: end-to-end latency.
.

policy as an SBS policy. Figure 6.12a shows applying these scheduling policies to workloads

that use Redis-only as a storage backup. As all functions are essentially treated as stateless

by function runtime, the locality-agnostic late binding policies outperform all other schedul-

ing policies: QueueBasedDirect provides up to 26% shorter tail (99 percentile) latency than

OOS policies and 36% shorter tail latency than PriorityBased. LaxityBasedDirect pro-

vides up to 23% shorter median and 26% shorter tail latency than OOS policies, as well

as 28% shorter median latency and 33% shorter tail latency than PriorityBased. Both

OOS and DBS policies are able to improve SBS scheduling (PriorityBased) on both me-

dian and tail latency due to their ability to modify function bindings on the fly. Being

laxity-aware helps LaxityBasedDirect perform better than QueueBasedDirect by short-

ening median latency by 27%. All adaptive reallocation policies provide shorter tails than

static priority-based strategies, providing that reallocation operations are needed to reduce

straggler effects.

Figure 6.12b shows applying the same set of policies to the workload with local object cache

enabled. Unlike Figure 6.12a, all policies depicted in this figure have shorter latencies due to

reduced remote state accesses. Both OOS policies and SBS policy achieve shorter latencies

by being locality aware, with 1RTT-AcceptAndCheck providing the shortest median and tail

latency: 1RTT-AcceptAndCheck provides up to 33% shorter median and 21% shorter tail

latency than DBS policies, as well as 17% shorter tail latency than SBS. 1RTT-RejectSend

provides up to 31% shorter median and 8% shorter tail latency than DBS policies and similar

performance to SBS.

In Figure 6.13a and Figure 6.13b we show the median and tail latency of each individual

92

(a) Redis-only state storage. (b) Local object caches with Redis state backup.

Figure 6.13: SBS, DBS and OOS policies using social network graph: per worker median
(top row) and tail latency (bottom row). Darker color indicates shorter latency.

worker, corresponding to scenarios described in Figure 6.12a and Figure 6.12b, respectively.

Comparing these two scenarios, we observe that DBS provide near-perfect load balancing

among workers compared to all other approaches with higher latency (both median and

tail). This is because using these policies results in much more object fetches by proactively

scheduling functions to workers that are less likely to contain objects locally. In contrast, the

OOS approaches are able to favor workers that are more likely to cache state objects by only

redirecting messages to lessee workers when violations are determined to occur. Meanwhile,

SBS produces uneven latency distribution due to skewed user popularity, which directly

translates to skewed workload distribution due to static bindings. We observe that the un-

even workload distribution causes higher latency for the same set of workers using both SBS

and OOS policies (Figure 6.13a). This pattern cannot be observed from Figure 6.13b as the

number of state operations reduces significantly and becomes a less significant contributing

factor toward request latencies.

With the non-skewed workload, SBS is preferable for settings using large object

sizes. At the same time, SBS and OOS work well for small cache capacity.

We further extend the previous scenario by comparing SBS policy with one OOS policy

(1RTT-AcceptAndCheck) and one DBS policy (LaxityBasedDirect). Here we explore how

both cache capacity (in terms of the number of memory objects) and object sizes influence

performance under different scheduling policies. Figure 6.14a shows how requests’ latency

progresses as we increase the maximum number of objects stored in the local object cache.

We also show the number of objects fetched from remote storage applying each policy. From

93

(a) Varying cache capacity (number of objects),
object size 256.

(b) Varying state object sizes, cache capacity
2000.

Figure 6.14: Varying cache capacity and state object size: latency distribution and number
of objects fetched.

Figure 6.14a, we observe that increasing cache capacity helps overall requests latency to

decrease. For locality-aware policy like PriorityBased and 1RTT-AcceptAndCheck, relaxing

the capacity constraint helps reduce request latencies at first (1000 to 2000) (the number of

state operations is reduced by 3.7× for 1RTT-AcceptAndCheck and 3.8× for PriorityBased).

Further relaxing this constraint has little effect on latency, as the number of object fetches

only reduces slightly and most of the objects accessed tend to be cached already. For DBS

policy like LaxityBasedDirect, increasing storage capacity reduces the number of fetches,

causing the majority of the request latencies to drop. We observe that LaxityBasedDirect

provides the best tail latency (up to 17% compared to 1RTT-AcceptAndCheck and 16%

compared to PriorityBased) while its median latency is higher (up to 31% comparing to

1RTT-AcceptAndCheck).

Varying the state object sizes has little effect on the number of objects fetched for each

policy, as shown in Figure 6.14b. We observe that increased object size moderately increases

the tail latency while using 1RTT-AcceptAndCheck due to potential overhead caused by

state accesses of reallocated functions. At the same time, the majority of the requests are

not influenced by changing object sizes. Due to the higher number of object fetches (5×
compared to locality-aware approaches), larger state object accesses impact performance

significantly for LaxityBasedDirect (with 21% increase in tail latency and 26% increase

in median latency). As we apply a relaxed latency target on the dataflow applications,

1RTT-AcceptAndCheck triggers reallocation operations lazily, resulting in similar latency

distribution compared to the SBS approach like PriorityBased. PriorityBased generates

94

less traffic to the Redis cluster by issuing only 4-5% more requests than the static-binding

PriorityBased approach.

(a) Handling constant popularity skewness across
users.

(b) Handling dynamic popularity skewness across
users (Pareto distribution).

Figure 6.15: Handling user popular skewness.

LaxityBasedDirect is preferred for the workload that has a static set of popular

accesses for small objects. 1RTT-AcceptAndCheck is preferred for a workload that

has data access with changing popularity over time. In Figure 6.15a, we explore

latency distribution while the system receives requests that are skewed towards popular

users, as described in [167]. The skewness indicates the proportion of users that are re-

sponsible for 90% of all requests. When the skewness is low, the latency distribution of

different policies is similar, with LaxityBasedDirect with marginally higher latency due

to the number of fetches performed. When we ingest requests that skew heavily (1% of

users ingest 90% of requests), LaxityBasedDirect performs significantly better than the

other approaches (with up to 10% improvement on success rate, 3.5× shorter tail latency

than 1RTT-AcceptAndCheck and 7.2× shorter tail latency than PriorityBased) as many

heavily accessed data objects can be fetched once and reused many times (even on the lessee

worker) due to small amount of popular accesses. This access pattern can be observed from

the decreasing number of state operations as we increase skewness from 0.1 to 0.01, which

leads to a drop of the number of remote fetches for LaxityBasedDirect (by 45%). The

difference in performance in this scenario indicates that LaxityBasedDirect would be the

preferred policy for skewed, eventual consistent requests with frequent accesses to a small

amount of small, popular objects.

Figure 6.15b shows an experiment where we inject transient workload spikes for each

95

worker. The average workload rate we generate is equivalent to the workload we generate

in Figure 6.15a. The rate of ingestion varies across time, forming a Pareto distribution with

an increasing skewness factor. Figure 6.15b shows that 1RTT-AcceptAndCheck is able to

find a good balance between the SBS approach and DBS approach: It reduces the tail

latency of SBS (by 60%) due to its ability to offload messages from workers that receive

transient load spikes. Meanwhile, it can also provide an excellent overall latency compared

to LaxityBasedDirect as it produces much fewer state accesses (19×) and therefore reduces

median latency by 2×.

6.7.4 Nexmark Data Analytical Queries

1 2 3 … n

1

… Clients

Servers

Logical Dataflow Physical Dataflow

Distributed
Storage Backend

1

Input Bid Parser

Bid Batch Partial
Aggregator

Window
Aggregator

Figure 6.16: Nexmark Aggregation Workload.

The social network workload performs

data read and writes in a highly concurrent

fashion without strict requirements on data

freshness. However, many dataflow appli-

cations require functions to be invoked in a

certain order to provide a complete view of

all past updates on function states. One cru-

cial application scenario for real-time data

processing frameworks is stream analytical

applications. We implement two Nexmark

benchmark queries based on [168, 169]. For

a microservice application that we examined

previously, the latency requirement set for

the application is largely measured per re-

quest, meaning that the latency of one request may not be influenced by how later re-

quests are handled. In contrast, many data streaming applications perform partial updates

to results when updates are received by performing aggregation operations (14 out of 23

queries [168] perform aggregation operations). We implement two tumbling window aggre-

gation queries (Highest Bid and Bid Quantization queries) from the Nexmark benchmark.

Figure 6.16 shows the function DAG of Nexmark queries: we implement a 2-staged dataflow:

The first stage receives streams of bid and auction information from clients. The second stage

performs stateful aggregation operations on input batches. The highest bid query computes

the highest bid price that has been received in the last tumbling window. The bid quantiza-

tion query computes bid price distribution by building a full profile of all bid prices received

in the last tumbling window. All window has a default duration of 10 seconds. To estimate

96

(a) LaxityBasedDirect synchronization.

(b) 1RTT-RejectSend synchronization.

Figure 6.17: Nexmark queries: window aggregation latency.

the execution cost of the downstream path, we use the sum of the execution cost of all

operators along the execution path while calculating message priorities.

Directly schedule a message targeting aggregation function using one of the scheduling

policies we described in Section 6.6 could lead to problems, as aggregation operation re-

quires all past updates to be seen before new updates are applied. By default, scheduling

policies could alter the order of messages executed between given pair and communicat-

ing functions. This could lead to missing updates when messages are processed after their

window(s) close [119]. Most aggregations can be performed distributedly and incremen-

tally [170], and messages targeting aggregation functions can be transparently offloaded

when needed before the window closes. As a result, updates can be performed locally and

then synchronized to global storage before final results are computed. Performing partial

97

aggregation allows messages to be reordered and executed on multiple workers without en-

forcing execution ordering globally, creating rooms for performance optimization. However,

special messages (e.g., messages that trigger window boundary) still need to be executed

after previous messages that contribute to the windowed result are seen and processed.

Here we show how scheduling policy can be designed to coordinate with this synchro-

nization process. We create a special type of marker messages that originate from each

data source when the window closes and propagate these messages downstream to ensure

that messages that previously transferred between the same pair of operators are processed

successfully.5These markers reach stage 2 function by reaching every worker that may have

invoked this function. Once the marker is received, these functions flush partial states stored

locally to remote storage and forward marker message to the final window aggregation func-

tion, where final results are retrieved and computed. We specify PARALLELISM RANGE, so

the scheduler only selects the neighboring range of PARALLELISM RANGE from the designated

lessor ID. Widening PARALLELISM RANGE increases communication during synchronization,

and narrowing this parameter reduces the number of choices for the scheduler to choose

candidate workers.

Figure 6.17 depicts how function requests are transferred between communicating func-

tions and how marker messages propagate through function DAG while applying two policies:

LaxityBasedDirect (Figure 6.17a) and 1RTT-RejectSend (Figure 6.17b). LaxityBasedDirect

selects the target operator before a message is dispatched (Section 6.6). Therefore, marker

messages need to be sent to all possible downstream workers to ensure all remaining mes-

sages between two workers that influence the next query result are delivered. We modify

LaxityBasedDirect so users could specify messages (e.g., marker messages) that would be

buffered until all previously pending messages on workers are delivered. On the other hand,

1RTT-RejectSend dispatch all messages to the lessor worker before messages are either i)

inserted into the lessor worker’s queue or ii) forwarded to the selected lessee6. There exists

no direct communication between stage 1 parser functions and any stage 2 functions except

the lessor worker of the message. As a result, this synchronization can be achieved by two

steps: i) each stage 1 function dispatch a marker message to the lessor worker (ensuring all

messages sent from stage 1 functions are delivered); and ii) the lessor collects all markers

and forwards a marker to each possible lessor within the PARALLELISM RANGE neighboring

range (ensuring all messages forwarded by lessors are delivered). For M stage 1 workers and

PARALLELISM RANGE of N , this process takes M ×N messages for LaxityBasedDirect with

5We assume source operator and channels between each pair of workers deliver messages in order.
6We enable FORCE MIGRATION in this example and we assume all channels between workers guarantee

in-order message delivery.

98

1 Hop from stage 1 function to stage 2, and (M + N) messages for 1RTT-RejectSend with

two hops from stage 1 function to stage 2 lessor and the lessor to all potential lessees.

(a) HighestBid Query Update Latency. (b) BidQuantization Query Update Latency.

Figure 6.18: Nexmark queries: latency distribution varied by policies. We show both final
aggregation latencies and pre-aggregation latencies.

OOS produces lighter synchronization overhead, making it a preferred policy

to distribute frequent, in-order operations. In order to show how both DBS and

OOS can work with dataflow applications to support distributed aggregation in Dirigo, in

Figure 6.18, we plot both windowed query latency and pre-aggregation latency for high-

est bid and bid quantization queries. Here pre-aggregation latency indicates the latency

between the generation time of the last contributing event and the time when the last

state update is applied to any stage 2 function. For the highest bid query, latencies col-

lected using 1RTT-RejectSend are lower than LaxityBasedDirect by up to 30% (median

latency) and 34% (tail latency). For the bid quantization query, latencies collected using

1RTT-RejectSend are lower than LaxityBasedDirect by up to 9% for both median and

tail latencies. We also observe that the aggregation stage is not the primary source of per-

formance overhead. Instead, LaxityBasedDirect’s pre-aggregation latency is about 130ms

higher than 1RTT-RejectSend (measured at median latency) as synchronization messages

from stage 1 function accumulate at stage 2 work queue, delaying updates sent from an-

other source that targets the same window. We do not observe the same behavior for the

bid quantization query. It collects large computational states, and synchronization of state

objects generates significantly longer overhead than the highest bid query (Figure 6.18a).

Figure 6.19 shows how latency distribution progresses as we apply both policies with dif-

ferent PARALLELISM RANGE. Figure 6.19a shows that reducing window size reduces overall

latency for both 1RTT-RejectSend and LaxityBasedDirect policies. We observe the gap

99

(a) BidQuantization Query. (b) HighestBid Query.

Figure 6.19: Nexmark queries: latency distribution varying window sizes.

between median latency 1RTT-RejectSend and LaxityBasedDirect widens as we decrease

window sizes (with median latency improvement of 9%, 35%, 51%). This increase shows that

1RTT-AcceptAndCheck is preferable when the function states are small, and the synchroniza-

tion process is the major contributor to the query latency. LaxityBasedDirect, on the other

hand, is less sensitive to increasing function states as it distributes all partial aggregation

operations evenly among operators. This effect is prominent for aggregation operations that

cannot combine function states (e.g., quantization, topK, etc.). For 1RTT-AcceptAndCheck,

which prefers allocating messages on lessor workers, messages with lax deadline constraints

are placed on the lessor worker’s queue when the window size is large. This could lead to

uneven distribution of state objects and influence state synchronization at the aggregation

stage. We aim to improve Dirigo with dynamic state-operation awareness in our future work.

For an aggregation operator that can combine function states (e.g., average, sum, max,

etc.) as in the highest bid query (Figure 6.19b), the size of function state is independent from

the number of requests handled by each worker. Therefore, 1RTT-AcceptAndCheck’s benefit

is consistent as we change the window sizes (44%, 52%, 49%), showing that 1RTT-RejectSend

is the preferable policy using different window sizes.

We further show the benefit of operator parallelization through running overloading an

aggregation operator using the bid quantization query and varying PARALLELISM RANGE in

Figure 6.20. The dashed line shows the aggregation operator’s latencies being executed on

a fixed worker in a single-threaded, in-order fashion (using PriorityBased scheduling pol-

icy). From the figure, we observe that when the PARALLELISM RANGE is small, the system

should opt to use the default PriorityBased policy as the synchronization process becomes

the bottleneck of the processing pipeline. Further increasing PARALLELISM RANGE reveals

100

the benefit of auto-parallelization provided by the system. Due to the lighter synchroniza-

tion overhead, 1RTT-RejectSend achieves a stable state (PARALLELISM RANGE = 4) faster

than LaxityBasedDirect (PARALLELISM RANGE = 12) and provides a better median latency

with fewer resources (PARALLELISM RANGE = 4, compared to PARALLELISM RANGE = 8 using

LaxityBasedDirect).

6.8 DISCUSSION

Figure 6.20: Nexmark queries: latency distri-
bution varying PARALLELISM RANGE.

Decentralized vs. centralized design:

Generally speaking, nearly all Dirigo poli-

cies can be implemented in a decentralized

and centralized way. We next compare the

choice of decentralized vs. centralized mech-

anisms, albeit in a limited way, to justify

our choice of decentralized mechanisms for

Dirigo’s policies.

A centralized message scheduler may lead

to performance bottlenecks for millisecond

granularity tasks performing computation

for real-time data streams. In contrast,

Dirigo’s scheduling actions are performed ei-

ther at the source or target workers on a per-

message basis. This design prevents mes-

sages from being dispatched to a centralized

entity. Here we show a comparison of performing centralized and decentralized scheduling

using Dirigo using controlled dataflow with 1 ms granularity tasks.

To perform centralized scheduling in Dirigo, we use one worker to serve as a scheduler

worker and perform scheduling operations, and the rest of all workers perform message

processing. All messages (from clients and function workers) are sent to the scheduler worker,

and the scheduler dispatch messages to a random worker. For decentralized scheduling, we

use Dirigo to run the QueueBasedDirect policy. As the goals of both scheduling policies

are similar (load balancing all messages across all workers), we show that using centralized

scheduling can result in higher request latency, as depicted in Figure 6.21a. Note that even

though QueueBasedDirect performs more sophisticated scheduling actions (i.e., probing

neighboring workers for queue size responses), it shows better scalability as we increase

the number of concurrent dataflows running concurrently. As we increase the number of

101

dataflows from 32 to 80, the maximum latency gap between the two approaches expands

from 2124ms to 3632ms (up by 71%).

Therefore we conclude that the decentralized mechanism is generally preferable to the

centralized mechanism for implementing Dirigo-like policies.

Operation Overhead: Next we measure the overhead of operations in Dirigo. Specifically,

we measure—are the new record queue operations worth the overhead they entail? Fig-

ure 6.21b shows the average comparison of queue operations performing Dirigo scheduling

policies. Specifically, we run our experiments to record queue operations overhead when the

message queue size is between 1000-2000. We record four types of queue operations, in-

cluding the three operations we describe in Algorithm 6.1 and a tryInserWithLaxityCheck

operation, where the scheduling policy first performs an acceptance check, and then inserts

the message directly if the acceptance check is successful. We show that using minimum

laxity queue improves laxityCheck and CheckAndInsert by 48× and 2× but increases the

overhead of add and poll by 91× and 109× on average respectively. The impact of the

queue implementation depends on how scheduling policies use these operations.

We conclude that minimum laxity queue is beneficial for scheduling policies that use laxity

check operations often (e.g., performing many acceptance checks on candidate workers). This

is generally true when the load across workers is imbalanced and high, and each message

may entail checks multiple times (in the system) before it is added.

(a) Centralized vs. decentralized scheduling
as we increase the number of concurrent run-
ning dataflows.

(b) Queue operation overhead.

Figure 6.21: Dirigo implementation.

102

6.9 CONCLUSION

In this chapter, we present Dirigo, a serverless function runtime that supports proactive

function scheduling. Dirigo natively supports in-memory function states. We build a set of

scheduling policies that aims to find a middle ground between balancing workload skewness

and preserving memory state locality. We test three categories of policies on state-of-art

benchmarks to explore the state spaces of application scenarios where each policy category

can provide the most benefit.

103

CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 SUMMARY OF CONTRIBUTIONS

System elasticity has long been the focus of research for real-time data processing systems.

With new types of data-centric applications that seek low-latency, near-real-time services

counting to emerge, this problem will continue to be important in the future. This thesis

proposed several techniques to help real-time data processing systems to provide tunable

performance under the influence of many environmental variables without compromising

resource efficiencies.

In Chapter 2, we proposed Stela [1], an stream processing system that performs on-

demand scheduling that 1) optimizes the post-scaling throughput; and 2) minimizes the

interruption to the ongoing computation. For scale-out, Stela selects which operators (inside

the application) are given more resources, and does so with minimal intrusion. Similarly,

for scale-in, Stela selects which machine(s) to remove in a way that minimizes the overall

detriment to the application’s performance.

We believe that deployers of the jobs should be able to specify performance targets as

intents of these jobs. The intent of these jobs should be i) user-facing (i.e., not involv-

ing the system’s internal metrics); and ii) interpretable across jobs with different types of

performance targets (latency and throughput). In Chapter 3 described how we solve these

challenges: In Henge [2], we proposed using a utility function to define job SLO, and Henge

uses utility function in its adaptation state machine to enforce its reconfiguration policy. We

also proposed Juice for Henge — a metric that captures the percentage of input data that

is effectively processed per unit of time. Juice reflects the processing efficiency of a job with

throughput-centric SLO.

Interactive data analytics engines typically handle real-time ingested data and analytics

queries that involve both newly ingested and historical data. In Chapter 4, we discussed

Getafix [3], a segment management solution that explores the query access pattern across

data segments observed from production traces. We observed that the popular (in terms of

the number of accesses per unit of time) shifts over time, and Getafix leverages an adap-

tive replication strategy (ModifiedBestFit) to i) determine the optimal plan that in-

cludes the number of replications and the placement of the replicas that minimizes query

span and memory consumption (in the static scenario), and ii) minimize network trans-

fer between replication placement plan periodically. Getafix is load-balance-aware, and the

ModifiedBestFit policy can be adapted to replication in heterogeneous settings.

104

In Chapter 5, we built Cameo [4] to explore a new fine-grained philosophy for designing a

multi-tenant stream processing system. Our key idea is to provide resources to each operator

based solely on its immediate need that stems from the priority of the data just received at

the operator. Our design handles temporal and spatial workload variation by i) Proactively

deriving priorities for messages (and their target operators) to match performance goals in

the workload specification; ii) Using a stateless scheduler that scales to many dataflows.

Instead of tracking each dataflow application, we assign priorities using a scheduling context

that is passed along with individual messages flowing between operators; iii) Improving this

prioritization both statically (e.g., accounting for query windowing semantics) and dynami-

cally (by profiling query execution at runtime).

In Chapter 6, we described Dirigo, a distributed scheduling framework for real-time stateful

dataflow applications with user intent. We envision that future real-time dataflow process-

ing should be adopting the serverless architecture with underlying runtime providing native

support for application-level function states. We built a serverless stack and a scheduling

framework prototype that can accommodate three categories of intent-aware scheduling poli-

cies. We further tested these policies against two stateful dataflow applications and studied

the best scheduling policies under different application scenarios.

7.2 FUTURE WORK

Cloud computing has gone through many waves of innovations during the last decade.

The most recent one was led by revolutions in the cloud deployment paradigm as well as

the emerging new cloud infrastructures. This thesis lays the groundwork for many future

directions:

Self-managing elastic real-time dataflows as functions: Despite being the most elas-

tic, cost-efficient deployment option for cloud users, serverless platforms have not yet become

the most optimal target framework for massive scale, stateful cloud applications. This is

because i) runtime scheduler does not support automated, state-aware scheduling; ii) many

stateful applications maintain large function state that cannot be migrated efficiently; iii) in-

stant scale-out/in leads to many state updates that cannot be merged/aggregated efficiently;

and iv) the state functions and their accesses are largely transparent to underlying runtime

and therefore cannot be optimized towards in-network devices and state storage. Despite

many applications showing significant resource efficiency improvement while deployed in a

serverless fashion [171], they are mostly stateless or close to stateless, and supporting stateful

applications with massive scale (e.g., data analytics, ML training) remains an open issue.

To fully achieve this vision, it is crucial to explore the following directions:

105

• Automated Stateful Function Scheduling: In Chapter 6 we explored scenarios

where different scheduling policies should be applied to stateful dataflow applications

based on various environmental factors (e.g., processing semantics, user intent, data

skewness, state access pattern, etc.). To best serve stateful functions in a multi-tenant

environment, schedulers such as Dirigo should be extended to 1. support automated

policy selection in order to adapt to workload needs on the fly and 2. support per-

dataflow user-intent through user-facing resource provisioning API.

• Scheduler/State Cache Co-design: Dirigo fetches state objects synchronously,

meaning that scheduling policy could be extended to predict whether a state object

should be fetched to achieve a better estimation for resource planning. In order to

achieve an accurate prediction, schedulers like Dirigo (or other runtime components)

should be extended to track previously routed requests or previously accessed state

object that remains in the object cache.

• In-cache State Management: Another potential optimization to build on the

serverless runtime is that the state management (e.g., state read, write, aggregation,

etc.) could be performed out of the critical path. This optimization requires function

runtime to create a data path that asynchronously performs state operation and choose

what (and how) to migrate (or offload) state objects intelligently. Once a scheduling

decision is made, the runtime can coordinate with the scheduler to pre-load data de-

pendencies in order to hide data fetching overhead.

Supporting hardware-agnostic function that can adapt to the heterogeneous

cloud: Utilizing a hybrid cloud has become a prominent issue recently due to the recent

progress in custom-designed chips and programmable hardware. The future cloud archi-

tecture creates new opportunities for us to rethink how to efficiently deploy real-time data

processing applications and build middleware to better accommodate the scenarios we have

discussed. Recent works [172, 173] propose solutions for cloud applications to better adapt

to the next-generation hybrid cloud using traditional (i.e., monolithic) hardware architec-

ture. Compared to existing architecture, disaggregated architecture provides two unique

opportunities to achieve high resource utilization that today’s cloud frameworks have yet

to embrace: i)As data generally have weaker locality and computational resources can stay

mostly stateless, functions can be dynamically re-allocated/parallelized to various types of

hardware resources if desired; and ii) For applications that require different types of target

devices, data does not need to be explicitly transferred between device memories but instead

could be accessed from memory nodes and/or storage devices.

106

Cross-layer System Elasticity: Works discussed in this thesis all focus on improving

system elasticity on an individual layer of the cloud stack. However, how these solutions can

be best incorporated in a non-interfering fashion remains an open question. Past research

in other areas of networking [174] has shown that supporting user-level requirements within

the underlying framework introduces performance benefits but needs to be carefully thought

out. Existing works such as [175, 176, 177] had to carefully design cross-layer solutions

for systems in the areas including wireless networks, video streaming systems, and sensor

networks. A potential direction of future research is to investigate how these elasticity

solutions work concurrently in cloud applications.

107

REFERENCES

[1] L. Xu, B. Peng, and I. Gupta, “Stela: Enabling Stream Processing Systems to Scale-in
and Scale-out On-demand,” in 2016 IEEE International Conference on Cloud Engi-
neering (IC2E). IEEE, 2016, pp. 22–31.

[2] F. Kalim, L. Xu, S. Bathey, R. Meherwal, and I. Gupta, “Henge: Intent-driven
Multi-Tenant Stream Processing,” in Proceedings of the ACM Symposium on Cloud
Computing, ser. SoCC ’18. New York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3267809.3267832 pp. 249–262.

[3] M. Ghosh, A. Raina, L. Xu, X. Qian, I. Gupta, and H. Gupta, “Popular is Cheaper:
Curtailing Memory Costs in Interactive Analytics Engines,” in Proceedings of the Thir-
teenth EuroSys Conference. ACM, 2018, p. 40.

[4] L. Xu, S. Venkataraman, I. Gupta, L. Mai, and R. Potharaju, “Move Fast and Meet
Deadlines: Fine-grained Real-time Stream Processing with Cameo,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21), 2021, pp.
389–405.

[5] Markets and Markets, “Streaming Analytics Market by Component, Application
(Predictive Asset Management, Risk Management, Location Intelligence, Sales and
Marketing, Supply Chain Management), Industry Vertical, Deployment Model, and
Region - Global Forecast to 2024,” Report. [Online]. Available: https://www.
marketsandmarkets.com/Market-Reports/streaming-analytics-market-64196229.html

[6] Research and Markets, “Streaming Analytics Market by Verticals - Worldwide
Market Forecast & Analysis (2015 - 2020),” Report, June 2015. [Online]. Available:
https://www.researchandmarkets.com/research/mpltnp/streaming

[7] The Apache Software Foundation, “Storm,” 2015. [Online]. Available: https:
//storm.apache.org

[8] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,
K. Ramasamy, and S. Taneja, “Twitter Heron: Stream Processing at Scale,” in Pro-
ceedings of the 2015 ACM SIGMOD international conference on Management of data,
2015.

[9] The Apache Software Foundation, “Flink,” 2014. [Online]. Available: https:
//flink.apache.org

[10] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized Streams:
Fault-tolerant Streaming Computation at Scale,” in Proceedings of the 24th ACM
Symposium on Operating Systems Principles. ACM, 2013, pp. 423–438.

108

[11] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli, “Druid:
A Real-time Analytical Data Store,” in Proceedings of the 2014 ACM International
Conference on Management of Data, ser. SIGMOD ’14. New York, NY, USA: ACM,
2014. [Online]. Available: http://doi.acm.org/10.1145/2588555.2595631 pp. 157–168.

[12] LinkedIn, “Pinot,” 2015. [Online]. Available: https://github.com/linkedin/pinot/wiki

[13] Amazon, “Redshift,” 2012. [Online]. Available: https://aws.amazon.com/redshift/

[14] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. Dhoot,
A. R. Kumar, A. Agiwal, S. Bhansali, M. Hong, J. Cameron, M. Siddiqi,
D. Jones, J. Shute, A. Gubarev, S. Venkataraman, and D. Agrawal, “Mesa:
A Geo-replicated Online Data Warehouse for Google’s Advertising System,”
Communications of the ACM, vol. 59, no. 7, pp. 117–125, June 2016. [Online].
Available: http://doi.acm.org/10.1145/2936722

[15] Facebook, “PrestoDB,” 2013. [Online]. Available: https://prestodb.io/

[16] L. Abraham, J. Allen, O. Barykin, V. Borkar, B. Chopra, C. Gerea, D. Merl, J. Metzler,
D. Reiss, S. Subramanian et al., “Scuba: Diving into Data at Facebook,” Proceedings
of the VLDB Endowment, vol. 6, no. 11, pp. 1057–1067, 2013.

[17] L. Mai, K. Zeng, R. Potharaju, L. Xu, S. Suh, S. Venkataraman, P. Costa, T. Kim,
S. Muthukrishnan, V. Kuppa et al., “Chi: A Scalable and Programmable Control Plane
for Distributed Stream Processing Systems,” Proceedings of the VLDB Endowment,
vol. 11, no. 10, pp. 1303–1316, 2018.

[18] Amazon Redshift, “Customer Success,” 2018. [Online]. Available: https://aws.
amazon.com/redshift/customer-success/

[19] Metamarkets, “Powered by Druid,” 2018. [Online]. Available: http://druid.io/
druid-powered.html

[20] D. Laney, “3D Data Management: Controlling Data Volume, Velocity and Variety,”
META group research note, vol. 6, no. 70, p. 1, 2001.

[21] T. Heinze, L. Aniello, L. Querzoni, and Z. Jerzak, “Cloud-based Data Stream Process-
ing,” in Proceedings of the 8th ACM International Conference on Distributed Event-
Based Systems. ACM, 2014, pp. 238–245.

[22] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez,
M. Hatoun, A. Maskey, A. Rasin et al., “Aurora: A Data Stream Management Sys-
tem,” in Proceedings of the International Conference on Management of Data (SIG-
MOD). ACM, 2003, pp. 666–666.

109

[23] A. Maskey, E. Ryvkina, M. Cherniack, Y. Ahmad, B. Berg, U. Cetintemel,
H. Jeong-Hyon, O. Papaemmanouil, A. Rasin, N. Tatbul, Y. Xing, S. Zdonik,
D. Abadi, M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker,
“Borealis, Distributed Stream Processing Engine,” 2017. [Online]. Available:
http://cs.brown.edu/research/borealis/public/

[24] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud Computing: What
It Is, and What It Is Not,” in Proceedings of the 10th International Conference on
Autonomic Computing (ICAC 13), 2013, pp. 23–27.

[25] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for data stream
processing,” IEEE Transactions on Parallel and Distributed Systems., vol. 25, no. 6,
pp. 1447–1463, 2014.

[26] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu, “Elastic Scaling of
Data Parallel Operators in Stream Processing,” in IEEE International Symposium on
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE, 2009, pp. 1–12.

[27] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, P. Selo, Y. Park, and
C. Venkatramani, “SPC: A Distributed, Scalable Platform for Data mining,” in Pro-
ceedings of the 4th International Workshop on Data Mining Standards, Services and
Platforms. ACM, 2006, pp. 27–37.

[28] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venkatramani, “De-
sign, Implementation, and Evaluation of the Linear Road Benchmark on the Stream
Processing Core,” in Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data. ACM, 2006, pp. 431–442.

[29] K.-L. Wu, K. W. Hildrum, W. Fan, P. S. Yu, C. C. Aggarwal, D. A. George, B. Gedik,
E. Bouillet, X. Gu, G. Luo et al., “Challenges and Experience in Prototyping a Multi-
modal Stream Analytic and Monitoring Application on System S,” in Proceedings of
the 33rd International Conference on Very Large Databases. VLDB Endowment,
2007, pp. 1185–1196.

[30] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “SPADE: The System S
Declarative Stream Processing Engine,” in Proceedings of the International Conference
on Management of Data (SIGMOD). ACM, 2008, pp. 1123–1134.

[31] H. Gupta, “Beyond Hadoop at Yahoo!: Interactive analytics with Druid,”
Talk, September 2016. [Online]. Available: https://conferences.oreilly.com/strata/
strata-ny-2016/public/schedule/detail/51640

[32] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache Hadoop YARN: Yet Another
Resource Negotiator,” in Proceedings of the 4th Annual Symposium on Cloud Comput-
ing. ACM, 2013, p. 5.

110

[33] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center.” in Proceedings of the 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), vol. 11, 2011, pp. 22–22.

[34] The Linux Foundation, “Kubernetes: Production-Grade Container Orchestration.”
[Online]. Available: https://kubernetes.io/

[35] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy, “Dhalion:
Self-Regulating Stream Processing in Heron,” Proceedings of the VLDB Endowment,
August 2017. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/dhalion-self-regulating-stream-processing-heron/

[36] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic Scaling for Data Stream
Processing,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6,
pp. 1447–1463, 2014.

[37] T. Heinze, L. Roediger, A. Meister, Y. Ji, Z. Jerzak, and C. Fetzer, “Online Parameter
Optimization for Elastic Data Stream Processing,” in Proceedings of the 6th ACM
Symposium on Cloud Computing. ACM, 2015, pp. 276–287.

[38] B. Li, Y. Diao, and P. Shenoy, “Supporting Scalable Analytics with Latency Con-
straints,” in Proceedings of the VLDB Endowment, vol. 8, no. 11. VLDB Endowment,
2015, pp. 1166–1177.

[39] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, M. Forshaw, and T. Roscoe,
“Three Steps is All You Need: Fast, Accurate, Automatic Scaling Decisions For Dis-
tributed Streaming Dataflows,” in Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), 2018, pp. 783–798.

[40] F. Kalim, L. Xu, S. Bathey, R. Meherwal, and I. Gupta, “Henge: Intent-driven multi-
tenant stream processing,” in Proceedings of the ACM Symposium on Cloud Computing
(SoCC). ACM, 2018, pp. 249–262.

[41] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu, “Elastic Scaling of Data
Parallel Operators in Stream Processing,” in Proceedings of International Parallel and
Distributed Processing Symposium. IEEE, 2009, pp. 1–12.

[42] M. Hoffmann, A. Lattuada, J. Liagouris, V. Kalavri, D. Dimitrova, S. Wicki,
Z. Chothia, and T. Roscoe, “Snailtrail: Generalizing Critical Paths For Online Anal-
ysis of Distributed Dataflows,” in Proceedings of the 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), 2018, pp. 95–110.

[43] M. Hoffmann, A. Lattuada, and F. McSherry, “Megaphone: Latency-conscious State
Migration For Distributed Streaming Dataflows,” Proceedings of the VLDB Endow-
ment, vol. 12, no. 9, pp. 1002–1015, 2019.

111

[44] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch, “Integrating
Scale Out and Fault Tolerance in Stream Processing Using Operator State Manage-
ment,” in Proceedings of the 2013 ACM SIGMOD international conference on Man-
agement of data. ACM, 2013, pp. 725–736.

[45] B. Lohrmann, P. Janacik, and O. Kao, “Elastic Stream Processing with Latency Guar-
antees,” in Proceedings of the 35th International Conference on Distributed Computing
Systems. IEEE, 2015, pp. 399–410.

[46] T. Z. Fu, J. Ding, R. T. Ma, M. Winslett, Y. Yang, and Z. Zhang, “DRS: Dynamic
Resource Scheduling for Real-Time Analytics over Fast Streams,” in Proceedings of
the 35th International Conference on Distributed Computing Systems. IEEE, 2015,
pp. 411–420.

[47] E. Kalyvianaki, T. Charalambous, M. Fiscato, and P. Pietzuch, “Overload Manage-
ment in Data Stream Processing Systems with Latency Guarantees,” in Proceedings of
the 7th IEEE International Workshop on Feedback Computing (Feedback Computing),
2012.

[48] E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. Pietzuch, “Themis: Fairness in Fed-
erated Stream Processing under Overload,” in Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016, pp. 541–553.

[49] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P. Valduriez,
“StreamCloud: An Elastic and Scalable Data Streaming System,” IEEE Transactions
on Parallel and Distributed Systems, vol. 23, no. 12, pp. 2351–2365, 2012.

[50] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi, M. J. Franklin,
B. Recht, and I. Stoica, “Drizzle: Fast and Adaptable Stream Processing at Scale,”
in Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 2017,
pp. 374–389.

[51] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-Aware Elastic Scaling
for Distributed Data Stream Processing Systems,” in Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems. ACM, 2014, pp. 13–
22.

[52] M. Wall, “Big Data: Are you ready for blast-off?” 2016, online. [Online]. Available:
http://www.bbc.com/news/business-26383058

[53] The Apache Software Foundation, “Apache Hadoop,” last Visited: December 1, 2021.
[Online]. Available: http://hadoop.apache.org/

[54] The Apache Software Foundation, “Apache Hive,” 2016, online. [Online]. Available:
https://hive.apache.org/

[55] The Apache Software Foundation, “Apache Pig,” 2016, online. [Online]. Available:
http://pig.apache.org/

112

[56] The Apache Software Foundation, “Apache Spark,” last Visited: December 1, 2021.
[Online]. Available: https://spark.apache.org/

[57] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed Data-
parallel Programs from Sequential Building Blocks,” in ACM SIGOPS Operating Sys-
tems Review, vol. 41, no. 3. ACM, 2007, pp. 59–72.

[58] The Apache Software Foundation, “Apache Storm,” http://storm.apache.org/, last
Visited: December 1, 2021.

[59] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. Maskey, A. Rasin, E. Ryvkina et al., “The Design of the Borealis
Stream Processing Engine.” in Proceedings of the Conference on Innovative Data Sys-
tems Research (CIDR), vol. 5, 2005, pp. 277–289.

[60] S. Loesing, M. Hentschel, T. Kraska, and D. Kossmann, “Stormy: An Elastic
and Highly Available Streaming Service in the Cloud,” in Proceedings of the Joint
EDBT/ICDT Workshops. ACM, 2012, pp. 55–60.

[61] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-
terson, A. Rabkin, I. Stoica et al., “A View of Cloud Computing,” Communications
of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[62] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive Online Scheduling in Storm,”
in Proceedings of the 7th ACM International Conference on Distributed Event-based
Systems. ACM, 2013, pp. 207–218.

[63] The Apache Software Foundation, “Apache Zookeeper,” last Visited: December 1,
2021. [Online]. Available: http://zookeeper.apache.org/

[64] “Emulab,” last Visited: December 1, 2021. [Online]. Available: http://emulab.net/

[65] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez,
M. Hatoun, A. Maskey, A. Rasin et al., “Aurora: A Data Stream Management Sys-
tem,” in Proceedings of the 2003 ACM SIGMOD International Conference on Man-
agement of Data. ACM, 2003, pp. 666–666.

[66] N. Tatbul, Y. Ahmad, U. Çetintemel, J.-H. Hwang, Y. Xing, and S. Zdonik, “Load
Management and High Availability in the Borealis Distributed Stream Processing En-
gine,” in GeoSensor Networks. Springer, 2008, pp. 66–85.

[67] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,
K. Ramasamy, and S. Taneja, “Twitter Heron: Stream Processing at Scale,” in Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of Data.
ACM, 2015, pp. 239–250.

[68] B. Lohrmann, P. Janacik, and O. Kao, “Elastic Stream Processing with Latency Guar-
antees,” in Distributed Computing Systems (ICDCS), 2015 IEEE 35th International
Conference on, June 2015, pp. 399–410.

113

[69] C. Jones, J. Wilkes, N. Murphy, and C. Smith, “Service Level Objectives,” last
Visited: December 1, 2021. [Online]. Available: https://landing.google.com/sre/
book/chapters/service-level-objectives.html

[70] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta, and R. H.
Campbell, “Samza: Stateful Scalable Stream Processing at LinkedIn,” Proceedings of
the VLDB Endowment, vol. 10, no. 12, pp. 1634–1645, 2017.

[71] “Uber Releases Hourly Ride Numbers In New York City To Fight De Blasio,” last
Visited: December 1, 2021. [Online]. Available: https://techcrunch.com/2015/07/22/
uber-releases-hourly-ride-numbers-in-new-york-city-to-fight-de-blasio/

[72] “How to collect and analyze data from 100,000 weather stations,” last Visited:
December 1, 2021. [Online]. Available: https://www.cio.com/article/2936592/
big-data/how-to-collect-and-analyze-data-from-100000-weather-stations.html

[73] “Storm Applications,” last Visited: December 1, 2021. [Online]. Available:
http://storm.apache.org/Powered-By.html

[74] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-Storm: Resource-
Aware Scheduling in Storm,” in Proceedings of the 16th Annual Middleware Confer-
ence. ACM, 2015, pp. 149–161.

[75] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, and S. Rao,
“Reservation-Based Scheduling: If You’re Late Don’t Blame Us!” in Proceedings of
the ACM Symposium on Cloud Computing. ACM, 2014, pp. 1–14.

[76] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov, J. Yaniv,
Í. Goiri, S. Krishnan, J. Kulkarni, and S. Rao, “Morpheus: Towards Automated SLOs
for Enterprise Clusters,” in Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation, 2016, p. 117.

[77] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applica-
tions. Springer, 2011.

[78] Wikipedia, “Pareto Efficiency — Wikipedia, The Free Encyclopedia,” 2016, last
Visited December 1, 2021. [Online]. Available: https://en.wikipedia.org/w/index.
php?title=Pareto efficiency&oldid=741104719

[79] “SLOs,” last Visited: December 1, 2021. [Online]. Available: https://en.wikipedia.
org/wiki/Service level objective

[80] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s Highly Available
Key-Value Store,” ACM SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 205–
220, 2007.

114

[81] M. Naaman, A. X. Zhang, S. Brody, and G. Lotan, “On the Study of Diurnal Urban
Routines on Twitter.” in Proceedings of the 6th International AAAI Conference on
Weblogs and Social Media, 2012.

[82] “SDSC-HTTP Trace,” last Visited: December 1, 2021. [Online]. Available:
http://ita.ee.lbl.gov/html/contrib/SDSC-HTTP.html

[83] “EPA-HTTP Trace,” last Visited: December 1, 2021. [Online]. Available:
http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html

[84] Y. Ahmad, B. Berg, U. Cetintemel, M. Humphrey, J.-H. Hwang, A. Jhingran,
A. Maskey, O. Papaemmanouil, A. Rasin, N. Tatbul, W. Xing, Y. Xing, and
S. Zdonik, “Distributed Operation in the Borealis Stream Processing Engine,”
in Proceedings of the 2005 ACM International Conference on Management of Data,
ser. SIGMOD ’05. New York, NY, USA: ACM, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1066157.1066274 pp. 882–884.

[85] “Lambda Architecture,” 2019. [Online]. Available: https://en.wikipedia.org/wiki/
Lambda architecture

[86] “Kappa Architecture,” 2019. [Online]. Available: https://www.oreilly.com/radar/
questioning-the-lambda-architecture/

[87] Wikipedia, “Bin Packing Problem,” 2018. [Online]. Available: https://en.wikipedia.
org/wiki/Bin packing problem

[88] W. Stallings, Operating Systems: Internals and Design Principles Edition: 5. Pearson,
2005.

[89] Wikipedia, “Hungarian algorithm,” 2018. [Online]. Available: http://en.wikipedia.
org/wiki/Hungarian algorithm

[90] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,
D. Harlan, and E. Harris, “Scarlett: Coping with Skewed Content Popularity in
Mapreduce Clusters,” in Proceedings of the Sixth Conference on Computer Systems,
ser. EuroSys ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1966445.1966472 pp. 287–300.

[91] D. Yu, Y. Zhu, B. Arzani, R. Fonseca, T. Zhang, K. Deng, and L. Yuan, “DShark: A
General, Easy to Program and Scalable Framework for Analyzing in-Network Packet
Traces,” in Proceedings of the 16th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’19, USA, 2019, p. 207–220.

[92] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin, “Orleans: Cloud
Computing for Everyone,” in Proceedings of the ACM Symposium on Cloud Computing
(SoCC). ACM, 2011, p. 16.

[93] “Orleans.” [Online]. Available: https://dotnet.github.io/orleans/

115

[94] “Akka.” [Online]. Available: https://akka.io/

[95] “Azure Functions.” [Online]. Available: https://azure.microsoft.com/en-us/services/
functions/

[96] “Serverless Streaming Architectures and Best Practices, amazon web services.”
[Online]. Available: https://d1.awsstatic.com/whitepapers/Serverless Streaming
Architecture Best Practices.pdf

[97] “Google Cloud Functions.” [Online]. Available: https://cloud.google.com/functions

[98] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al., “Cloud Programming Sim-
plified: A Berkeley View on Serverless Computing,” arXiv preprint arXiv:1902.03383,
2019.

[99] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, “Apache
Flink: Stream and batch processing in a single engine,” Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, vol. 36, no. 4, 2015.

[100] “Storm Multitenant Scheduler.” [Online]. Available: https://storm.
apache.org/releases/current/javadocs/org/apache/storm/scheduler/multitenant/
package-summary.html

[101] C. L. Liu and J. W. Layland, “Scheduling Algorithms For Multiprogramming in a
Hard-real-time Environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61,
1973.

[102] A. K.-L. Mok, “Fundamental Design Problems of Distributed Systems For the Hard-
real-time Environment,” Ph.D. dissertation, Massachusetts Institute of Technology,
1983.

[103] P. Garefalakis, K. Karanasos, P. R. Pietzuch, A. Suresh, and S. Rao, “Medea: schedul-
ing of long running applications in shared production clusters.” in Proceedings of the
Thirteenth EuroSys Conference (EuroSys), 2018, pp. 4–1.

[104] P. Garefalakis, K. Karanasos, and P. Pietzuch, “Neptune: Scheduling Suspendable
Tasks for Unified Stream/Batch Applications,” in Proceedings of the ACM Symposium
on Cloud Computing (SoCC), 2019, pp. 233–245.

[105] A. Newell, G. Kliot, I. Menache, A. Gopalan, S. Akiyama, and M. Silberstein, “Opti-
mizing Distributed Actor Systems For Dynamic Interactive Services,” in Proceedings
of the Eleventh European Conference on Computer Systems. ACM, 2016, p. 38.

[106] P. Haller and M. Odersky, “Scala Actors: Unifying Thread-based and Event-based
Programming,” Theoretical Computer Science, vol. 410, no. 2-3, pp. 202–220, 2009.

116

[107] P. A. Bernstein, T. Porter, R. Potharaju, A. Z. Tomsic, S. Venkataraman, and W. Wu,
“Serverless Event-Stream Processing over Virtual Actors,” in Proceedings of the Con-
ference on Innovative Data Systems Research (CIDR), 2019.

[108] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jack-
son, K. Gade, M. Fu, J. Donham et al., “Storm @ Twitter,” in Proceedings of the
International Conference on Management of Data (SIGMOD). ACM, 2014, pp. 147–
156.

[109] P. Carbone, M. Fragkoulis, V. Kalavri, and A. Katsifodimos, “Beyond Analytics: The
Evolution of Stream Processing Systems,” in Proceedings of the 2020 ACM SIGMOD
international conference on Management of data, 2020, pp. 2651–2658.

[110] A. Kumar, Z. Wang, S. Ni, and C. Li, “Amber: A Debuggable Dataflow System Based
on the Actor Model,” Proceedings of the VLDB Endowment, vol. 13, no. 5, pp. 740–753,
2020.

[111] N. Li and Q. Guan, “Deadline-Aware Event Scheduling for Complex Event Processing
Systems,” in Proceedings of the International Conference on Intelligent Data Engi-
neering and Automated Learning. Springer, 2013, pp. 101–109.

[112] Z. Ou, G. Yu, Y. Yu, S. Wu, X. Yang, and Q. Deng, “Tick Scheduling: A Deadline
Based Optimal Task Scheduling Approach For Real-time Data Stream Systems,” in
Proceedings of the International Conference on Web-Age Information Management.
Springer, 2005, pp. 725–730.

[113] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik, “Aurora: A New Model and Architecture For Data
Stream Management,” Proceedings of the VLDB Endowment, vol. 12, no. 2, pp. 120–
139, 2003.

[114] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah, “TelegraphCQ:
Continuous Dataflow Processing,” in Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data. ACM, 2003, pp. 668–668.

[115] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Ol-
ston, J. Rosenstein, and R. Varma, “Query Processing, Resource Management, and
Approximation in a Data Stream Management System,” in Proceedings of the Confer-
ence on Innovative Data Systems Research (CIDR), 2003.

[116] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, and M. Stonebraker,
“Operator Scheduling in a Data Stream Manager,” in Proceedings 2003 VLDB Con-
ference. Elsevier, 2003, pp. 838–849.

[117] B. Babcock, S. Babu, R. Motwani, and M. Datar, “Chain: Operator Scheduling For
Memory Minimization in Data Stream Systems,” in Proceedings of the 2003 ACM
SIGMOD international conference on Management of data. ACM, 2003, pp. 253–
264.

117

[118] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “Semantics and Evaluation
Techniques For Window Aggregates in Data Streams,” in Proceedings of the 2005 ACM
SIGMOD international conference on Management of data. ACM, 2005, pp. 311–322.

[119] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernández-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle, “The Dataflow
Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-
Scale, Unbounded, Out-of-Order Data Processing,” Proceedings of the VLDB Endow-
ment, vol. 8, pp. 1792–1803, 2015.

[120] E. G. Coffman, Jr, M. R. Garey, and D. S. Johnson, “An Application of Bin-packing
to Multiprocessor Scheduling,” SIAM Journal on Computing, vol. 7, no. 1, pp. 1–17,
1978.

[121] J. A. Stankovic, M. Spuri, M. Di Natale, and G. C. Buttazzo, “Implications of Classical
Scheduling Results for Real-time Systems,” Computer, vol. 28, no. 6, pp. 16–25, 1995.

[122] A. S. Tanenbaum and H. Bos, Modern operating systems. Pearson, 2015.

[123] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F.
Terwilliger, and J. Wernsing, “Trill: A High-performance Incremental Query Processor
for Diverse Analytics,” Proceedings of the VLDB Endowment, vol. 8, no. 4, pp. 401–
412, 2014.

[124] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier, “Out-of-
order Processing: A New Architecture for High-performance Stream Systems,” Pro-
ceedings of the VLDB Endowment, vol. 1, no. 1, pp. 274–288, 2008.

[125] “Flink time attribute.” [Online]. Available: https://ci.apache.org/projects/flink/
flink-docs-release-1.7/dev/event time.html

[126] “Apache Kafka Core Concepts.” [Online]. Available: https://kafka.apache.org/11/
documentation/streams/core-concepts

[127] “.NET ConcurrentBag.” [Online]. Available: https://docs.microsoft.com/en-us/
dotnet/api/system.collections.concurrent.concurrentbag-1?view=netframework-4.8

[128] Azure, “Sizes for windows virtual machines in azure.” [Online]. Available:
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes

[129] M. Welsh, D. E. Culler, and E. A. Brewer, “SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services,” in Proceedings of the 18th ACM Symposium
on Operating System Principles SOSP. ACM, 2001, pp. 230–243.

[130] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing,
and S. B. Zdonik, “Scalable Distributed Stream Processing.” in Proceedings of the
Conference on Innovative Data Systems Research (CIDR), vol. 3, 2003, pp. 257–268.

118

[131] M. Balazinska, H. Balakrishnan, and M. Stonebraker, “Load Management and High
Availability in the Medusa Distributed Stream Processing System,” in Proceedings of
the 2004 ACM SIGMOD international conference on Management of data. ACM,
2004, pp. 929–930.

[132] R. Avnur and J. M. Hellerstein, “Eddies: Continuously Adaptive Query Processing,”
in Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, 2000, pp. 261–272.

[133] V. Raman, B. Raman, and J. M. Hellerstein, “Online Dynamic Reordering For Inter-
active Data Processing,” in VLDB, vol. 99, 1999, pp. 709–720.

[134] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure, “Adaptive Control of
Extreme-scale Stream Processing Systems,” in Proceedings of the IEEE 26th Inter-
national Conference on Distributed Computing Systems (ICDCS). IEEE, 2006, pp.
71–71.

[135] X. Li, Z. Jia, L. Ma, R. Zhang, and H. Wang, “Earliest Deadline Scheduling for
Continuous Queries Over Data streams,” in Proceedings of the IEEE International
Conference on Embedded Software and Systems. IEEE, 2009, pp. 57–64.

[136] Y. Gu, G. Yu, and C. Li, “Deadline-aware Complex Event Processing Models Over
Distributed Monitoring Streams,” Mathematical and Computer Modelling, vol. 55, no.
3-4, pp. 901–917, 2012.

[137] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax, S. McVeety,
D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: Fault-Tolerant Stream Processing
at Internet Scale,” in Proceedings of the VLDB Endowment, vol. 6, no. 11. VLDB
Endowment, 2013, pp. 1033–1044.

[138] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi, “Naiad:
A Timely Dataflow System,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles. ACM, 2013, pp. 439–455.

[139] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and A. Doan, “Muppet:
MapReduce-style Processing of Fast Data,” Proceedings of the VLDB Endowment,
vol. 5, no. 12, pp. 1814–1825, 2012.

[140] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed Stream Computing
Platform,” in Proceedings of the IEEE Data Mining Workshops (ICDMW). IEEE,
2010, pp. 170–177.

[141] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A Catalog of Stream
Processing Optimizations,” ACM Computing Surveys (CSUR), vol. 46, no. 4, p. 46,
2014.

119

[142] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer,
“Network-aware operator placement for stream-processing systems,” in Proceedings of
the 22nd International Conference on Data Engineering, (ICDE). IEEE, 2006, pp.
49–49.

[143] W. Kleiminger, E. Kalyvianaki, and P. Pietzuch, “Balancing Load in Stream Pro-
cessing with the Cloud,” in Proceedings of the 27th International Conference on Data
Engineering Workshops. IEEE, 2011, pp. 16–21.

[144] S. Loesing, M. Hentschel, T. Kraska, and D. Kossmann, “Stormy: An Elastic and
Highly Available Streaming Service in the Cloud,” in Proceedings of the 2012 Joint
EDBT/ICDT Workshops. ACM, 2012, pp. 55–60.

[145] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer, “Auto-Scaling Techniques for
Elastic Data Stream Processing,” in Proceedings of the 30th International Conference
on Data Engineering Workshops. IEEE, 2014, pp. 296–302.

[146] Y. Wu and K.-L. Tan, “Chronostream: Elastic Stateful Stream Computation in the
Cloud,” in Proceedings of the 31st IEEE International Conference on Data Engineering
(ICDE). IEEE, 2015, pp. 723–734.

[147] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and Z. Zhang,
“Timestream: Reliable Stream Computation in the Cloud,” in Proceedings of the 8th
ACM European Conference on Computer Systems. ACM, 2013, pp. 1–14.

[148] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy, “Dhalion: self-
regulating stream processing in Heron,” Proceedings of the VLDB Endowment, vol. 10,
no. 12, pp. 1825–1836, 2017.

[149] X. Fu, T. Ghaffar, J. C. Davis, and D. Lee, “Edgewise: A Better Stream Processing
Engine For the Edge,” in Proceedings of the USENIX Annual Technical Conference
(ATC), 2019, pp. 929–946.

[150] “AWS Lambda.” [Online]. Available: https://aws.amazon.com/lambda/

[151] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang,
W. Paul, M. I. Jordan et al., “Ray: A Distributed Framework for Emerging AI Appli-
cations,” in Proceedings of the 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), 2018, pp. 561–577.

[152] A. Akhter, M. Fragkoulis, and A. Katsifodimos, “Stateful Functions as a Service in
Action,” Proceedings of the VLDB Endowment, vol. 12, no. 12, pp. 1890–1893, 2019.

[153] “Using AWS Lambda with Amazon Kinesis.” [Online]. Available: https:
//docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html

[154] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking Behind the Curtains
of Serverless Platforms,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18), 2018, pp. 133–146.

120

[155] “Serverless Architectures with AWS Lambda.” [Online]. Available: https://docs.aws.
amazon.com/whitepapers/latest/serverless-architectures-lambda/timeout.html

[156] “Serverless Needs a Bolder, Stateful Vision.” [Online]. Available: https:
//thenewstack.io/serverless-needs-a-bolder-stateful-vision/

[157] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, “Serverless Computation with OpenLambda,” in 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16), 2016.

[158] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng, “Wukong: A Scalable
and Locality-enhanced Framework for Serverless Parallel Computing,” in Proceedings
of the 11th ACM Symposium on Cloud Computing, 2020, pp. 1–15.

[159] A. Singhvi, K. Houck, A. Balasubramanian, M. D. Shaikh, S. Venkataraman, and
A. Akella, “Archipelago: A Scalable Low-latency Serverless Platform,” arXiv preprint
arXiv:1911.09849, 2019.

[160] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka, “Sequoia: Enabling
Quality-of-service in Serverless Computing,” in Proceedings of the 11th ACM Sympo-
sium on Cloud Computing, 2020, pp. 311–327.

[161] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Distributed, Low
Latency Scheduling,” in Proceedings of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles. ACM, 2013, pp. 69–84.

[162] M. Mitzenmacher, “The Power of Two Choices in Randomized Load Balancing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 12, no. 10, pp. 1094–1104, 2001.

[163] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of the ACM, vol. 56,
no. 2, pp. 74–80, 2013.

[164] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk: Hybrid Datacen-
ter Scheduling,” in 2015 USENIX Annual Technical Conference (USENIX ATC 15),
2015, pp. 499–510.

[165] “Redis.” [Online]. Available: https://redis.io

[166] “Stateful Functions: A Platform-Independent Stateful Serverless Stack.” [Online].
Available: https://ci.apache.org/projects/flink/flink-statefun-docs-master/

[167] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,
B. Ritchken, B. Jackson et al., “An Open-source Benchmark Suite for Microservices
and Their Hardware-software Implications for Cloud & Edge Systems,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2019, pp. 3–18.

[168] “Nexmark Benchmark Suite.” [Online]. Available: https://github.com/nexmark/
nexmark/

121

[169] P. Tucker, K. Tufte, V. Papadimos, and D. Maier, “NEXMark—A Benchmark for
Queries over Data Streams DRAFT,” Technical report, OGI School of Science & En-
gineering at OHSU, Septembers, Tech. Rep., 2008.

[170] S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “Supporting Aggregate Queries
Over Ad-hoc Wireless Sensor Networks,” in Proceedings Fourth IEEE Workshop on
Mobile Computing Systems and Applications. IEEE, 2002, pp. 49–58.

[171] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell,
V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless Computing: Current
Trends and Open Problems,” in Research Advances in Cloud Computing. Springer,
2017, pp. 1–20.

[172] T. N. Le, X. Sun, M. Chowdhury, and Z. Liu, “AlloX: Compute Allocation in Hybrid
Clusters,” in Proceedings of the Fifteenth European Conference on Computer Systems,
2020, pp. 1–16.

[173] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and M. Zaharia,
“Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads,” in
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), 2020, pp. 481–498.

[174] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end Arguments in System Design,”
ACM Transactions on Computer Systems (TOCS), vol. 2, no. 4, pp. 277–288, 1984.

[175] S. Shakkottai, T. S. Rappaport, and P. C. Karlsson, “Cross-layer Design For Wireless
Networks,” IEEE Communications magazine, vol. 41, no. 10, pp. 74–80, 2003.

[176] E. Setton, T. Yoo, X. Zhu, A. Goldsmith, and B. Girod, “Cross-layer Design of Ad Hoc
Networks for Real-time Video Streaming,” IEEE Wireless Communications, vol. 12,
no. 4, pp. 59–65, 2005.

[177] A. G. Ruzzelli, G. M. O’Hare, and R. Jurdak, “MERLIN: Cross-layer Integration of
MAC and Routing For Low Duty-cycle Sensor Networks,” Ad Hoc Networks, vol. 6,
no. 8, pp. 1238–1257, 2008.

122

