
Getafix: Workload-aware Distributed Interactive Analytics

Mainak Ghosh, Le Xu, Xiaoyao Qian,
Thomas Kao, Indranil Gupta

University of Illinois, Urbana Champaign

{mghosh4, lexu1, qian13, tkao4,
indy}@illinois.edu

Himanshu Gupta
Yahoo! Inc

himanshg@yahoo-inc.com

Abstract
Distributed interactive analytics engines (Druid, Redshift, Pinot)
need to achieve low query latency while using the least storage
space. This paper presents a solution to the problem of replica-
tion of data blocks and routing of queries. Our techniques decide
the replication level of individual data blocks (based on popular-
ity, access counts), as well as output optimal placement patterns for
such data blocks. For the static version of the problem (given set
of queries accessing some segments), our techniques are provably
optimal in both storage and query latency. For the dynamic version
of the problem, we build a system called Getafix that dynamically
tracks data block popularity, adjusts replication levels, dynamically
routes queries, and garbage collects less useful data blocks. We im-
plemented Getafix into Druid, the most popular open-source inter-
active analytics engine. Our experiments use both synthetic traces
and production traces from Yahoo! Inc.’s production Druid clus-
ter. Compared to existing techniques Getafix either improves stor-
age space used by up to 3.5× while achieving comparable query
latency, or improves query latency by up to 60% while using com-
parable storage.

1. INTRODUCTION
Real-time analytics is projected to continue growing annually at

a rate of 31% [13]. Apart from stream processing engines, which
have received much attention [4, 5, 6, 22, 34], real-time analyt-
ics now also includes the burgeoning area of interactive data ana-
lytics engines such as Metamarkets’ Druid [45] (used by Yahoo!
Inc.), Amazon’s Redshift [1], and LinkedIn’s Pinot [17]. These
systems have been widely adopted [2, 20] in companies like Ya-
hoo! [21], LinkedIn [16], and Pinterest [19], etc. Yahoo! internally
uses Druid for 35 applications spanning usage analytics, revenue
reporting, spam analytics, ad feedback, and Flurry [11] SDK re-
porting. Yahoo!’s deployment covers more than 2000 hosts, and
each application indexes 75 Billion events per day, and it processes
2.5 Million queries per day [7].

In such interactive data analytics engines, data is ingested from
many data analytics pipelines including batch and streaming sources,
then it is indexed and stored in a data warehouse. This data is

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 2 4 6 8 10 12 14 16
A

v
e
ra

g
e
 Q

u
e
ry

 L
a
te

n
cy

 (
m

s)
Replication Factor

15 HN / 1500 qps

15 HN / 2500 qps

30 HN / 2500 qps

Figure 1: Varying replication factor as number of compute node
and query injection rate changes. ‘HN’ stands for the num-
ber of compute nodes, and ‘qps’ stands for injected operations
(queries) per sec.

immutable. The data warehouse resides in a backend tier, e.g.,
HDFS [38] or Amazon S3 [3]. In parallel, queries arrive and are
run on multiple compute nodes that reside in a frontend tier (clus-
ter). These compute nodes have several orders of magnitude less
storage space (Terabytes) compared to the warehouse (Exabytes).
Thus, the compute nodes need to access data from the warehouse
in such a way so as to: i) minimize query execution time, and ii)
maximize storage utilization.

To achieve high performance, these systems exploit parallelism
at query execution level, i.e., for a query that accesses multiple
segments (data blocks), it is run in parallel on each segment, and
then the results are collected and aggregated. Segments need to be
placed carefully, e.g., two “popular” segments accessed by many
queries should not be colocated. Segments can be replicated to in-
crease the number of choices in assigning queries to nodes. How-
ever, full replication is prohibitive because of limited storage space
in the frontend tier and the high network bandwidth incurred.

Today’s systems use simple strategies for managing data at the
compute nodes which include: 1) uniformly replicating all seg-
ments and 2) a system administrator manually creating storage tiers
with different replication factors and then assigning segments based
on his/her estimate of popularity. The former approach is sub-
optimal because some data is more popular than others [24]. For
instance, we analyzed traces from Yahoo!’s Druid cluster and we
found that top 1% of data is an order of magnitude more popular
than the bottom 40% (see Figure 2a). Uniform replication con-
strains the benefits of parallelism for such data. The tier-based
replication scheme (approach (2)) is laborious, and cannot adapt in

real time to changes in query patterns and/or cluster configuration.
The right amount of replication needed to achieve good perfor-

mance depends on the query injection rate and the cluster size. Fig-
ure 1 illustrates this via a few combinations of number of compute
nodes (HNs) and query rates (qps). The “knee” of a given line de-
termines the minimum replication level that achieves almost low
latency as full replication. With 15 compute nodes, the knee of the
curve occurs at around 6 replicas for 1500 queries per sec, but the
knee becomes higher (9 replicas) when the input rate increases to
2500 queries per sec. The knee also falls with an increase in the
number of compute nodes from 15 to 30.

Some techniques in this class of systems replicate based on data
popularity, but they approximate popularity via recency of data [45].
That is, they assume that most queries will touch data that was
ingested recently and is only a few hours to days old. However,
our analysis of Yahoo!’s Druid cluster traces across multiple days
shows that even older data can be popular, either transiently or for
long periods. For instance, Figure 3 shows recent segments (B1)
have a 50% chance of co-occurring with segments that are up to 5
months old (A1); we explain this plot in detail later. Equating re-
cency may result in a popular old data becoming colocated with a
recent data, overloading that compute node with many queries and
prolonging query completion times. Other techniques like Scar-
lett [24] replicate solely based on query injection rate. This can
lead to good query performance but incurs large storage costs.

We present a new system called Getafix 1 to address these chal-
lenges. The key is to use query injection rate, current cluster capac-
ity, and measured popularity of data, to dynamically decide replica-
tion factor for each data block in the system. We start by addressing
the static version of the problem, where we are given a fixed set of
queries and the segments each needs to access. We present an algo-
rithm for placing segments and scheduling queries at the compute
nodes, and show that this algorithm achieves optimality in both run
time (of the query set) as well as storage utilization (number of
segment replicas across all nodes).

Next we develop techniques to solve the dynamic version of the
problem wherein data and queries are streaming in continuously.
Our dynamic solution, implemented in our Getafix system, com-
bines a segment popularity metric based on segment access counts,
along with a best fit strategy for loading segments. It contains
techniques for loading segments as well as for routing incoming
queries. Getafix also minimizes the volume of network transfer
required for loading data from the backend warehouse by using a
bipartite matching approach.

We implemented Getafix and integrated it into Druid [45], which
is one of the most popular open-source interactive data analytics
engines in use today. We present experimental results comparing
Getafix to the closest systems: 1) base Druid system with fixed
replication strategies, and 2) Scarlett [24], which solves a similar
problem but solely for batch processing systems like Hadoop [14],
Dryad [31], etc. Getafix reduces storage usage by up to 3.5×
compared to Scarlett [24], while still providing comparable query
latency performance. Getafix improves median query latency by
60% compared to uniform replication when using similar amount
of storage.

In summary, our main contributions are:
• We propose new algorithms and techniques for data manage-

ment in interactive data analytics engines.
• In the static version of the problem, our algorithm provably

minimizes both storage requirement as well as query running
time (§3).

1In “Asterix” comics, Getafix is the name of the village druid who brews magic po-
tions.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700 800C
D

F
(o

v
e
r

S
e
g

m
e
n
ts

)

Segment Accesses
(a) CDF of Segment Popularity.

(b) Segment Popularity In the Past.

Figure 2: Yahoo! Workload Analysis.

• We solve the dynamic variant of the segment placement and
query routing problem (§4).
• We design and implement our system Getafix into Druid, a pop-

ular interactive data analytics engine that is open-source (§4).
• We evaluate Getafix using both real-world workloads from Ya-

hoo! (§5) and synthetic traces.

2. BACKGROUND

2.1 System Model
We present a general architecture of an interactive data analytics

engine. To be concrete, we borrow our terminology from a popular
system in this space, Druid [45].

An interactive data analytics engine receives results from both
batch and streaming pipelines. The incoming data from batch pipelines
is directly stored into a backend storage tier, also called deep stor-
age. Data from streaming pipelines is collected by a realtime node
for a pre-defined time interval and/or till it reaches a size thresh-
old. The collected results are then indexed and pushed into deep
storage. This chunk of results, also identified by the time interval
it was collected in, is called a segment. A segment is an immutable
unit of data that can be queried, and also placed at and replicated
across, compute nodes. (By default the realtime node can serve
queries accessing a segment until it is handed off to a dedicated
compute node.)

Compute nodes residing in a frontend cluster are used to serve
queries by loading appropriate segments from the backend tier.
These compute nodes are called historical nodes (HNs), and we
use this term in the rest of the paper.

2

 0

 20

 40

 60

 80

 100

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5O
v
e
rl

a
p

 i
n
 S

e
g

m
e
n
ts

(%
)

Workload/Hours

B1
A3

Figure 3: Yahoo! Workload: Overlap in segment accesses
across different hours of 3 workloads. Each workload identi-
fied with the workload name (A/B/C: see Table 1) and the ith
hour.

The coordinator node handles data management. Upon seeing
a segment being created, it selects a suitable compute node (HN).
The coordinator can ask multiple HNs to load the segment, thereby,
creating replicas of a segment. Once loaded, the HNs can start
serving queries which access this segment.

Queries are sent to a frontend router, also called broker. A bro-
ker node maintains a view of which nodes (historical/realtime) are
currently storing which segments. A typical query accesses multi-
ple segments. The broker routes the query to the relevant compute
nodes in parallel. The broker then collates or aggregates the re-
sponses and sends it back to the client.

In Druid, all internal coordination like segment loading between
coordinator and HN is handled by a Zookeeper [30] cluster. Druid
also uses MySQL [18] for storing metadata from segments and fail-
ure recovery. This makes the broker, coordinator, and historical
nodes, all stateless. This enables fast recovery by spinning up a
new machine.

2.2 Workload Insights

Name Period Total Segments Total Accesses
A 5 months old 0.6K 65K
B 1 month old 9.3K 0.8M
C 1 week old 1.3K 64K

Table 1: Druid traces from Yahoo! production clusters.

We analyze Yahoo!’s Druid cluster workloads spanning several
hundreds of machines, and many months of segments (segments
are hourly). We use three diverse workload traces (shown in Ta-
ble 1). We draw two useful observations that will feed into our
design decisions:
Segment Access is skewed, and recent segments are generally
more popular: Figure 2a plots the CDF of the access counts for
workload B (other workloads yielded similar trends and are not
shown). The popularity is skewed: the top 1% of segments are ac-
cessed an order of magnitude more than the bottom 40% segments.
While this skew has been shown in batch processing systems [24],
we are the first to confirm it for interactive analytics systems. The
skewed workload implies that some segments are more important
and selective replication is needed.

Figure 2b shows the number of times a segment was accessed
in the workload trace B. That is, the 4000th data point shows the

total access count for the segment created 4000 hours before this
workload was created. We observe that segments are most popular
3 to 8 hours after creation, and this popularity is about 2 × more
than segments which are a week old. However, a few select very old
segments (e.g., bumps at about a year ago) continue to stay popular.
This is usually due to interesting events such as Thanksgiving or
holiday weeks.
Some (older) segments always stay popular: Figure 3 shows the
level of overlap between a segment accessed during an hour of the
Yahoo! workload (shown on the horizontal axis), and a reference
hour (B1 or A3). Here, “overlap” is defined as the size of the in-
tersection divided by the size of the union, across the two sets of
segment accesses.

First, we observe a 50% overlap of segments in A1 with B1 and
40% between A2 and B1. This large overlap across workloads
spread across 5 months suggests that there must be relatively old
segments that are being accessed again. This confirms again that
some select old segments may be popular (for a while) far in the
future after they are created.

Second, the high overlap among the segments in hours A3 through
A5 and B1 through B5 indicates that segments generated nearby in
time are highly likely to be queried together, and the length of such
a temporal locality is at least 3 hours. This gives any replication
policy ample time to adjust replication levels.

3. STATIC VERSION OF SEGMENT PLACE-
MENT PROBLEM

We formally define the static problem (§3.1), our solution (§3.2),
and give a proof of optimality (§3.3).

3.1 Formulation: Static Version of Problem
Given m segments, n historical nodes (HNs), and k queries that

access a subset of these segments, our goal is to find a segment al-
location (segment assignment to HN(s)) that both: 1) ensures query
load balance, and 2) minimizes the total replication required. For
simplicity we assume: a) each query takes unit time to process each
segment it accesses, and b) the HNs are all empty. Our implemen-
tation (later sections) relaxes these assumptions.

Consider the segment-query pairs in the given static workload,
i.e., all pairs (sj , qi) where query qi needs to access segment sj .
Spreading these segment-query pairs uniformly across all compute
nodes automatically gives a time-optimal schedule; this is because
it is load balanced across all HNs, and no two HNs finish more than
1 time unit apart from each other. A load balanced assignment is
desirable as it always achieves the minimum completion time for
the set of queries. However, arbitrarily (or randomly) assigning
segment-query pairs to HNs may not minimize the total amount of
replication across HNs.

Consider an example with 6 queries accessing 4 segments. The
access characteristics C for the 4 segments are: {S1:6, S2:3, S3:2,
S4:1}. In other words, 6 queries access segment S1, 3 access S2

and so on. A possible time-optimal (balanced) assignment of the
query-segment pair could be: bin HN1 = {S1:3, S2:1}, HN2 =
{S2:2, S3:1, S4:1}, HN3 = {S1:3, S3:1}. However, this assign-
ment is not optimal in replication factor (and thus storage). The
total number of replicas fetched by the above layout was 7. The
minimum number of replicas for this example however is 5. An
allocation that achieves this minimum is: HN1 = {S1:4}, HN2 =
{S2:3, S4:1}, HN3 = {S1:2, S3:2}.

Formally, the input to our problem is: 1) segment access request
counts C = {c1, . . . cm} for k queries accessing m segments, and
2) n HNs each with capacity d

∑
i C

n
e. We wish to find:

3

Allocation X = {xij = 1, if segment i is replicated at HN j},
such that it minimizes

∑
i

∑
j xij .

Figure 4: Query Q1, Current Segment Allocation, and one pos-
sible routing strategy for Q1.

This problem has similarities to the bin packing problem [8]. A
segment-query pair is treated as a ball and a HN represents a bin.
Each segment is represented by a color, and there are as many balls
of a color as there are queries accessing it. The number of distinct
colors assigned to a bin (HN) is the number of segment replicas this
HN needs to store.

The problem is then to place the balls in the bins in a load-
balanced way that minimizes the number of “splits” for all colors,
i.e., the number of bins each color is present in, summed up across
all colors. This number of splits is the same as the total number of
segment replicas. Unlike traditional bin packing which is NP-hard,
our version of the problem is solvable in polynomial time.

Figure 4 shows an example of a query Q1 that requests segments
S1, S2 and S3. Based on the segment allocation shown in the table,
one possible query routing strategy is to route the requests from
Q1, to both HN2 and HN3. However, this needs to be done in a
way that takes other queries and their requirements into account.

3.2 Solution
We first present a generalized template algorithm (Algorithm 1).

This algorithm can be instantiated with any of three heuristics that
we describe next, via the CHOOSEHISTORICALNODE routine.

Algorithm 1 maintains a priority queue of segments, sorted in
decreasing order of popularity (i.e., number of queries accessing
the segment). The algorithm iteratively extracts the next segment
Si from the head of the list, and allocates the segment-query pairs
which access it to a HN (selected based on a heuristic). If the se-
lected HN’s current capacity is insufficient to take all these pairs,
then: a) all available slots in that HN are filled with the segment-
query pairs for that segment, and b) the segment’s count is up-
dated to reflect remaining segment-query pairs, and it is re-inserted
back into the priority queue at the appropriate position (via binary
search).

The total number of iterations in this algorithm equals the total
number of replicas created across the cluster. The algorithm thus
takes time O((

∑m
i=1 ci) · log(m)), i.e., it is linear in the number

of query-segment pairs. This bound is loose and the actual typical
performance is much better.

There are three options for the CHOOSEHISTORICALNODE rou-
tine, all inspired by segmentation strategies from traditional oper-
ating systems [40]:

First Fit: We choose the next HN (lowest HN id) that is not yet
full, i.e., argminHN∗ binCap[HNi] ≤ capacity. The intuition

input: C: Access counts for each segment
nodelist: List of HNs

Algorithm MODIFIEDFIT(C, nodelist)
n← LENGTH(nodelist)

capacity ← d
∑

Ci∈C
|Ci|

n
e

binCap← ALLOCATE(n, capacity)
priorityQueue← BUILDMAXHEAP(C)
while !EMPTY(priorityQueue) do

(segment, count)← EXTRACT(priorityQueue)
(left, bin)← CHOOSEHISTORICALNODE
(count, binCap)
LOADSEGMENT(nodelist, bin, segment)
if left > 0 then

INSERT(priorityQueue, (segment, left))
end

end
Algorithm 1: Generalized Allocation Algorithm.

Figure 5: An example execution of First Fit and expected final
configuration.

here is to fill up bins in a FIFO way and reduce external fragmen-
tation [12]. If the available HN capacity is insufficient, we fill up
that HN as much as we can, and return the segment with a reduced
query count back to the queue.

Figure 5 considers our running example where C is {S1:6, S2:3,
S3:2, S4:1}. First fit picks segment S1 and places it in HN1 as it is
the first bin with available slots, returning the remaining 2 queries
for S1 to the queue. Then, it picks segment S2 and assigns it to
HN2. At this point, HN2 is not full. The next segment in the
queue S1 (count 2, tie with S2 broken via lower segment id) is
assigned to fill up HN2. Since segment S1 has count of 2 but
HN2 has only one slot, S1 is re-inserted into the queue with a count
of 1. Continuing this way, the final state reached is shown in the
figure. This strategy may be sub-optimal in replication count, e.g.,
the above example creates 6 total replicas, but we showed earlier in
§3.1 that the optimal was 5 replicas. So First Fit is not optimal.

Largest Fit: We choose the HN with the largest available capac-
ity leftover, i.e., argmaxHN∗(binCap). The intuition is to create
large enough holes so that segments picked in later iterations with
smaller counts (fewer queries needing them) can fully fit in them.
If the HN’s capacity is insufficient in an iteration, we fill up the HN
and return the segment with reduced count back to the queue.

Figure 6 shows a different example and the final allocation due
to Largest Fit (ties broken via lower HN and segment ids). This

4

Figure 6: An example execution of Largest Fit and expected
final configuration.

creates 7 replicas. However the optimal is 6 replicas and an optimal
allocation is: HN1 = {S1:6}, HN2 = {S2:3, S3:3}, HN3 = {S4:2,
S1:2, S5:2}. Thus Largest Fit is not optimal either.

Best Fit: We choose, in each iteration, the next HN which would
have the least slots remaining after accommodating all the queries
in the current segment, i.e., argminHN∗max{0, (binCap[HNi]
- number of queries for this segment)}, with ties broken by lower
HN id. The intuition is to pack the number of queries in the slots
more effectively. If none of the nodes have sufficient capacity (for
the segment at the queue head), we default to Largest Fit for this
iteration, i.e., we choose the HN with the largest available capacity
(ties broken by lower HN id), fill it as much as possible, and return
queries (if any, with updated counts) to the queue.

Figure 7 shows an example execution for Best Fit. The reader
can verify that the final assignment is correct (ties broken via lower
HN and segment ids). This allocation in fact reaches the minimum
number of replicas.

Next we formally prove that the MODIFIEDBESTFIT (Algo-
rithm 1 using Best Fit for CHOOSEHISTORICALNODE) strategy
in fact is optimal in the amount of replication.

Figure 7: An example execution of MODIFIEDBESTFIT and ex-
pected final configuration.

3.3 Optimality Proof
We now formally prove that MODIFIEDBESTFIT minimizes the
amount of replication among all load balanced assignments. (This
section can be skipped without loss of understanding the rest of the
paper.)

3.3.1 Balls and Bin Problem
For ease of exposition, we restate the problem using the balls

and bins abstraction. We have m balls of p colors (p ≤ m) and n
bins. The bins have capacity dm

n
e. There are many load balanced

assignments possible for the balls in the bins. The cost of each bin
(in a given assignment) is calculated by counting the number of
unique color balls in it. The sum of bin costs gives the cost of the
assignment. This cost is equivalent to the number of replicas cre-
ated by our algorithm in §3.1. We claim that MODIFIEDBESTFIT
minimizes the cost for a load balanced assignment of balls in bins.

3.3.2 Proofs

LEMMA 3.1. In a balls and bins arrangement using
MODIFIEDBESTFIT algorithm, no pair of bins can have more than
1 color in common.

PROOF. Assume there is a pair of bins b1 and b2 that have 2
colors in common, c1 and c2. Either of c1 or c2 must have been
selected first to be placed. W.l.o.g. assume c1 was selected first
(in the ordering of colors during the assignment). Since c1 is split
across b1 and b2, it must have filled one of the bins. However, this
means that c2 could not have been in bin b1 as it is selected only
afterwards. This contradicts our assumption.

Next, lets define an important operation called swap, which will be
used later in our proof:

Swap Operation: A 2−way swap operation takes an equal num-
ber of balls from 2 bins and swaps them. A k−way swap similarly
creates a chain (closed loop) of k swaps across k bins.

LEMMA 3.2. A k−way swap is equivalent to k 2−way swaps.

PROOF. We prove this by induction.
Base Step: Trivially true when k = 2.
Induction Step: Assume a k − way swap is equivalent to k

2 − way swaps. Let us add another (k + 1)th node HNk+1 to a
k − way chain HN1, HN2, . . . , HNk to make a (k + 1) − way
swap chain. However, this can be written as a series of 2-way
swaps: i) a k − way swap, executed as (k − 1) 2-way swaps
among HN1, HN2, . . . , HNk (as in the induction step, but skip-
ping the last swap), followed by ii) a 2-way swap between HNk

and HNk+1, and then iii) a 2-way swap between node HNk+1

and HN1. This creates a chain of (k + 1) 2− way swaps.

We now define an important term that improves any assignment:

Successful swap: This is a swap which reduces the assignment
cost (sum of unique colors across all bins).

Note that for a successful 2-way swap, a prerequisite is the exis-
tence of at least one common color across both bins in the success-
ful swap.

LEMMA 3.3. No successful swap is possible for the
MODIFIEDBESTFIT algorithm.

PROOF. Since a k−way swap is equivalent to k 2−way swaps
(Lemma 3.2), we prove the theorem by showing that there is no

5

successful 2 − way swap. For the rest of proof, we use the term
“swap” to denote only a 2− way swap.

We prove this by contradiction. Lets say a successful swap is
possible. From Lemma 3.1, we know that there is at most one
common color between any pair of bins. (Note that by definition, a
swap must move back an equal number of balls from b2 to b1.) This
means that there exist 2 such bins whose common color ball can be
moved completely to one of the bins without causing additional
color splits due to the balls moved back from b2 to b1.

Lets assume that bins b1 and b2 have common balls of green
color in them. Bin b1 has n1 green color balls and bin b2 has n2

balls of the same color. W.l.o.g. assume all the green color balls
from bin b1 are moved to b2, in order to consolidate balls (and
therefore lower the number of color splits). An equal number of
balls need to be moved back. Three cases arise:
• Case 1: n1 > n2: In the original assignment order of balls

into bins, consider the first instance when green color balls were
assigned to either bin b1 or bin b2. Since n1 > n2, then it
must be true that bin b1 must have filled with color green before
color green hit b2 – this can be proved by contradiction. If b2
had filled first instead, either: 1) all (n1 + n2) balls would
have fit in b2 (which did not occur), or 2) b2’s n2-sized hole
must have been larger than b1’s n1-sized hole (which is not
true). Essentially bin b1 was selected first because it had the
largest hole (this is Best Fit, and since none of the holes are
large enough to accommodate all green color balls, we pick the
largest hole).
Next, in the swapping operation, we swap n1 green color balls
from b1 to b2. Thus we need to find n1 balls from b2 to swap
back. When n1 balls of green color were put into b1, it is not
possible that b2 had n1 or more empty slots available (otherwise
b2 would have been picked for n1 instead of b1). This means
that to find n1 balls to swap back from b2, we have to pick
from balls that arrived before color green did. But by definition,
any such color would have had at least (n1 + n2) balls (due to
the priority order), and because b2 still has holes when green
color arrives later, any such previously red-colored balls would
have been wholly put into b2. However, picking this color for
swapping would cause a further split (in color red) as we can
only move back n1(< n1+n2) balls from b2 to b1. This means
that the swap cannot be successful.
• Case 1: n1 < n2: Analogous to Case 1, we can show that

bin b2 filled first with color green before bin b1 did. To find n1

balls to move back from bin b2 to b1, we have to choose among
balls that arrived before color green in bin b2, since green color
was the last to arrive at b2 (i.e., filled it out). But any such pre-
vious color red must have at least (n1 + n2) balls in b2 (due to
the priority order), and choosing red would create an additional
color split (in color red). This cannot be a successful swap.
• Case 3: n1 = n2: W.l.o.g., assume b1 was filled first with n1

green color balls, then after some intermediate bins were filled,
n2 green color balls were put into b2. All such intermediate bins
must also have had exactly n1-sized holes (due to the priority
order, Best Fit strategy, and existence of n2 color green balls in
the queue). Bin b2 cannot get any of these intermediate balls as
it cannot have more than n1 slots when b1 was filled with green
color (otherwise it would have been picked instead of b1). For
our swap operation, this means one can only choose to swap
back a color red (from b2 to b1) that was put into b2 before b1
was filled with green color. However, again this means color
red must have had at least (n1 + n2) balls put into b2 (due to
the priority order), and moving back only some of these balls
will cause an additional split (in color red). This cannot be a

successful swap.

THEOREM 3.4. MODIFIEDBESTFIT minimizes the amount of
replication as well as achieves the lowest completion time for a
query set (maximizes throughput).

PROOF. By Lemma 3.3, MODIFIEDBESTFIT generates load
balanced allocation that minimizes the sum of unique color balls
across all bins, which in turn minimizes replication. Load balanced
allocation of query-segment pairs implies the completion time is
minimized.

4. GETAFIX: SYSTEM DESIGN
In this section, we discuss the design of Getafix. First, we give

an overview of how we use MODIFIEDBESTFIT for replication,
placement and routing (§4.1). Then we present the key design and
implementation decisions of Getafix.

Figure 8: Getafix Architecture.

4.1 Overview
The static version assumes complete knowledge of all segments

and queries up front. In reality, both segments and queries are dy-
namically streaming in all the time. Our approach divides the ex-
ecution time into small windows and incrementally computes the
amount of replication required for each segment. This approach
works because as discussed in Section §2.2 segment popularity per-
sists for a while.

Figure 8 shows the general architecture of our Getafix system.
The historical nodes (HNs) are tasked with collecting the total
number of segment accesses. The coordinator periodically (ev-
ery minute) queries the HNs for the segment access information.
It aggregates the responses from multiple HNs. A HN resets its
counter after sending out this information. The coordinator runs
MODIFIEDBESTFIT to calculate the segment popularity. Segment
popularity is aged exponentially as:

∑K
i=1(Cij × 1

2i−1)
where Cij

is the actual access count for segment sj in window i.
At the end of a run, the output of MODIFIEDBESTFIT is used for

both segment placement and query routing.
Segment Placement: To ensure query load balance, segments need
to be colocated according to the results of MODIFIEDBESTFIT. In
our running example (Figure 7), S3 should occupy one HN, S3

and S4 should be stored in another node, and finally, S1 and S2

6

should occupy the last node. After receiving this information the
coordinator sets up the HNs to load or remove respective segments.
Query Routing: Apart from colocating segments, HNs should also
serve the right number of queries, so that the number of segment
requests routed to the HN matches the segment-query pairs on that
HN. In our example (Figure 7), segment S3 has 5 query-server pairs
of which 4 are in HN1 and 1 is in HN2. This means the replica at
HN1 serves 80% of queries accessing while the remaining 20% is
served from HN2. The resulting routing table looks like:

S1 0 0 100
S2 0 0 100
S3 80 20 0
S4 0 100 0

Table 2: Routing Table for Figure 7.

The broker nodes periodically poll the coordinator for the routing
table. In our implementation, this period is 20 seconds. We use a
shorter duration than the frequency at which coordinator runs to
ensure routing table at broker end is not stale. The broker also
maintains a view of segment assignments. So, it can detect when
the routing table is inconsistent. At this point, it routes queries by
randomly picking a HN which has the segment based on its own
view. If collisions are detected that cause hostpots, the frequency
of polling is increased.

4.2 Segment Loading
To serve queries right away, when a new segment is created (at a

realtime node), Getafix immediately and eagerly replicates once at
a random HN, independent of whether some queries are requesting
to access it. Later, our replication may create more replicas (de-
pending on segment popularity). This is preferable to letting the
real time nodes handle queries for fresh segments (the approach
used in today’s Druid system), which overloads the real time node.
This early bootstrapping also allows segment count calculation to
start early.

Getafix retries a query if it failed because the segment was not
loaded into a HN. This could happen for instance, if the segment
was unpopular for a long duration and was garbage collected from
the HNs. Just like a fresh segment, this segment is first loaded to a
random HN. Unlike Druid which silently ignores the segment and
returns an incomplete result, we incur slightly elevated latency but
always return a complete and correct answer.

4.3 Matching-based Placement
To optimize the network transfer volume of placing segments in

MODIFIEDBESTFIT, Getafix models this as a configuration assign-
ment problem. This problem is treated as a bipartite graph shown in
Figure 9 where vertices on the left side represent expected config-
urations (Ei) and vertices on the right represent HNs (HNi) with
a current set of replicas. An edge represents an assignment and the
cost of the assignment is calculated as the number of data transfers
required for the HN (HNi) to have all the segments in expected
configuration (Ei).

Minimizing data transferred in this graph can be achieved by
finding the minimum cost bipartite matching. In the example in
Figure 9, the final assignment is shown with thick lines. E1 ⇒
HN1, E2 ⇒ HN3, E3 ⇒ HN2. The total number of network
transfers required is 2. As opposed to this, a naive allocation where
HN HNi chooses to have segments in the expected configuration
Ei, would have required 3 data transfers (segment S4 and S3 to
HN2, and segments S2 to HN3).

Figure 9: Configuration Assignment problem from Figure 7
represented as a bipartite graph.

Getafix’s replication policy constructs a bipartite graph (simi-
lar to Figure 9) by comparing the results from MODIFIEDBESTFIT
with the current segment assignments to HNs. We use the classical
Hungarian Algorithm [15] to find the minimum matching. The co-
ordinator uses the results to set up data transfers for the segments
to their appropriate HNs.

4.4 Lazy Deletion and Garbage Collection
MODIFIEDBESTFIT also tells us which replicas are no longer

required. This is because incoming queries are no longer accessing
the segments, or the segment counts have dropped. For instance, in
Figure 9, segment S1 is not needed in HN1 and HN3 after config-
uration change.

However we do not delete such segments eagerly, instead de-
ferring their deletion. We implement lazy deletion by rate-
limiting how many replicas of a segment are deleted during each
MODIFIEDBESTFIT run: currently it is set to 1. This lazy approach
retains segments in case their popularity increases again, and avoids
network IO. Natural fluctuation in segment accesses causes pop-
ularity to fluctuate, and lazy deletion is tolerant to making hasty
decisions.

To limit storage utilization, we implemented our own garbage
collector for segments in the coordinator. The garbage collector
evicts unused segments from the frontend tier. The coordinator pe-
riodically checks the storage pressure and if this exceeds a thresh-
old, it marks unpopular segments for removal until the pressure is
alleviated. Typically, the threshold is set as a fraction of the total
storage available, currently set to 80%. Since we already main-
tain segment popularity to run MODIFIEDBESTFIT, we reuse this
information to choose which segments to remove.

4.5 Fault Tolerance
Entities like the broker, HN, and coordinator are stateless and

after a failure can be spun up within minutes. Metrics like seg-
ment counts are kept in HNs by Getafix, but also fetched by the
coordinator and translated into routing tables at the brokers. After
a HN failure that loses some of these segment counts, Getafix can
continue routing with slightly stale data until segment counts catch
back up. This typically happens within minutes.

To avoid the effect of losing segment counts on the coordinator
we periodically checkpoint it to a MySQL table every 1 minute.

7

 0

 50

 100

 150

 200

 250

 300

10HN
1750qps

15HN
2500qps

20HN
3250qps

25HN
4000qps

Im
p

ro
v
e
m

e
n
t

C
o
m

p
a
re

d
 T

o
 S

ca
rl

e
tt

 (
%

)

Number of HNs/Input Query Rate

Median
75th Percentile
99th Percentile

(a) Improvement in Storage Space compared to Scarlett.

 0

 500

 1000

 1500

 2000

 2500

 3000

10HN
1750qps

15HN
2500qps

20HN
3250qps

25HN
4000qps

Q
u
e
ry

 L
a
te

n
cy

 (
m

s)

Number of HNs/Input Query Rate

Getafix Average
Scarlett Average
Getafix 99th Percentile
Scarlett 99th Percentile

(b) Query Latency: Average and Tail.

Figure 10: Comparison of Getafix vs. Scarlett under Synthetic
Workload.

We do a full update instead of an incremental update as MySQL is
optimized for bulk writes.

5. EVALUATION
We evaluate Getafix using deployments on a 50 machine cluster.

Our experiments are based on both synthetic data, and workload
traces from the Druid production cluster at Yahoo!. We summarize
our results here:
• Compared to the best existing strategy (Scarlett), Getafix re-

duces median and 99th percentile storage space by 2× - 3.5×,
while producing comparable query latency, across both syn-
thetic and Yahoo! workloads, and in both batch and streaming
settings.
• Compared to fixed replication (a common strategy used today

in Druid) using similar amount of storage, Getafix improves
median query latency by 20% - 60%.
• Getafix’s garbage collector improves 95th percentile query per-

formance by 25% - 55%.
• Getafix’s routing strategy improves tail query latency by 35%

compared to a random scheme.

5.1 Methodology
Experimental setup. We deployed Getafix on a 50 machine clus-
ter consisting (from Emulab [43]) of d430 [10] machines each with
two 2.4 GHz 64-bit 8-Core processor, 64 GB RAM, connected us-
ing a 10Gbps network. We deployed Druid on dedicated machines
as well as on Docker [9] containers (to constrain memory). The 50

 0

 50

 100

 150

 200

 250

 300

10HN
1750qps

15HN
2500qps

20HN
3250qps

25HN
4000qps

Im
p

ro
v
e
m

e
n
t

C
o
m

p
a
re

d
 T

o
 S

ca
rl

e
tt

 (
%

)

Number of HNs/Input Query Rate

75th Percentile
95th Percentile
99th Percentile

(a) Improvement in Storage Space compared to Scarlett.

 0

 500

 1000

 1500

 2000

 2500

 3000

10HN
1750qps

15HN
2500qps

20HN
3250qps

25HN
4000qps

Q
u
e
ry

 L
a
te

n
cy

 (
m

s)

Number of HNs/Input Query Rate

Getafix Average
Scarlett Average
Getafix 99th Percentile
Scarlett 99th Percentile

(b) Query Latency: Average and Tail.

Figure 11: Comparison of Getafix vs. Scarlett under Yahoo!
Production Workload.

machines are used to run up to 25 compute nodes (HNs), 16 bro-
kers, Zookeeper and Kafka nodes, realtime nodes, and colocated
clients.
Workloads. We generated data using a custom schema, and
streamed via Kafka into a Druid realtime node. We used two query
workloads:
• Synthetic Workload: Typically, Druid queries summarize re-

sults collected in a time range. In other words, each query has
a start time and an interval. We generate query workloads by
picking values for the start time and interval from a specified
distribution. By default, we use Latest as the start time dis-
tribution and Zipfian as our interval distribution. Our choice
of these parameters are driven by two observation – 1) recent
data is more popular, and 2) queries with small interval range
are more common (e.g., query over hours is more popular than
days, etc). To enable fast experiments, we use 5 minute-sized
segments, but we ran the experiments in such a way that our
results hold for any segment size (e.g., hourly).
• Production Workload: We use the Yahoo! traces described

earlier in §2.2. We scaled down the workload to fit our cluster.
Scaling Query Rate. We inject queries at a fixed rate (250
queries/s) between each client and the broker. Instead of increasing
per-client query rate (which would cause congestion due to throt-
tling at both client and server), we scale query rates by linearly
increasing the number of clients and brokers.
Metrics. Our main metrics measure cost (storage) and performance
(query latency). We measure averages as well as tail values.
Baselines. We compare Getafix using two baselines:

8

1. Scarlett: We implemented Scarlett’s [24] techniques into
Getafix (around 2000 lines of code). Scarlett is the clos-
est system we found that handles skewed popularity of data.
While Scarlett was implemented for Hadoop, it is intended
to work generally.

We implemented Scarlett’s round-robin based algorithm 2.
The round-robin algorithm counts the number of concurrent
accesses to a file to determine how many replicas to assign.
The intuition is to alleviate hotspot in the system by provid-
ing more replicas. We collect the concurrent segment access
statistics from the historical nodes (HNs) and send it to the
coordinator to calculate and modify the number of replicas
for each segment. The algorithm uses a configurable net-
work budget parameter. Since we did not cap network budget
usage in Getafix, we chose not to do it for Scarlett too (for
fairness in comparison).

2. Uniform: We compared our system to the simple (but popu-
lar in Druid deployments today) approach where all segments
are uniformly replicated.

5.2 Comparing Getafix with Scarlett
We increase the compute capacity (number of HNs) and scale

the query load proportionally. Simultaneous scaling ensures pro-
portional load on the HNs. Concretely, for 10 HNs we use 7 clients,
and for every additional 5 HNs we add 3 clients. We perform two
types of experiments: 1) For streaming experiments, we ingest data
for 30 minutes and simultaneously send queries at a specified input
rate; 2) For batch experiments, we ingest for 30 minutes and then
generate query workload for an additional 15 minutes.
Storage Space Savings. Figure 10 shows the improvement in
memory and absolute latencies for the synthetic workload, while
Figure 11 shows corresponding results for the production work-
load. For the synthetic workload, Getafix reduces median storage
space usage by 2× - 3.5× compared to Scarlett and 99th percentile
storage space by 2× - 3.5× (Figure 10a). For experiments with
the production workload (Figure 11a), we see 2× - 3.5× reduction
in 75th percentile storage and similar improvements for 99th per-
centile. Scarlett performance suffers because it decides to replicate
solely based on segment popularity. Getafix minimizes replicas by
providing popular segments with a larger share of the compute in a
single machine. As a result for the popular segments, Getafix cre-
ates fewer replicas than Scarlett. As the number of HNs increase,
Getafix has more choices to replicate, and so the performance im-
provement plateaus to about 2×.
Query Latency. We achieve these storage savings with little to
no impact on query performance. The average query latencies ob-
served for both synthetic (Figure 10b) and production (Figure 11b)
workloads are stable across Scarlett and Getafix. The tail latency
(99th percentile) for Getafix is marginally higher than Scarlett’s in
the production case, by 25% to 30%. This is because Getafix cre-
ates fewer replicas for the popular segment and under heavy query
load, Druid throttles queries at the HNs. The tail latencies can be
increased if Druid’s underlying throttling mechanism were less ag-
gressive.

5.3 Storge-Latency Tradeoff
Figure 12 shows the cost-performance tradeoff curve, plotting

median storage used (cost) against the average latency observed
(performance). We compare using results from one of the synthetic
workloads running on 15 HNs and receiving 2500 queries/s. We ran
2We avoid the priority-based algorithm since it is intended for variable file sizes, but
segment sizes in interactive analytics engines are in the same ballpark.

4 uniform replication experiments starting with a replication factor
of 3 and going upto 12. Getafix: a) uses 4× less storage space than
Scarlett while giving comparable average latency, and b) it is well
below the envelope of the fixed replication strategy. Essentially, we
found that Getafix was creating a number of replicas that is just at
the knee of the curve in Figure 1 (§1).

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 Q

u
e
ry

 L
a
te

n
cy

 (
m

s)

Median Storage Used (GB)

Uniform

Getafix

Scarlett

Figure 12: Storage-Latency Tradeoff.

5.4 Getafix Vs. Uniform Replication Under
Similar Storage

Since uniform replication has a choice of storage space, we com-
pare it against Getafix when both use similar storage. The results
are shown in Figure 13. We carefully choose a replication factor for
uniform such that the total storage space used by both the schemes
is similar. (It turns out that the following heuristic works best to
calculate uniform’s number of replicas to achieve similar storage
space as Getafix: calculate 75th percentile of total segment count
from Getafix, and divide by the total number of segments.) We ran
synthetic streaming workloads for 30 minutes with data ingestion
and query generation.

We observe that both median and average latencies see an im-
provement between 20% - 60%. The tail latency also improves.
Essentially the popular segments in the uniform approach are repli-
cated infrequently compared to Getafix, leading to a longer queue-
ing time at HNs hosting popular segments and increasing the me-
dian query response.

 0

 20

 40

 60

 80

 100

10HN
1750qps

RF:2

15HN
2500qps

RF:3

20HN
3250qps

RF:4

25HN
4000qps

RF:5

Im
p

ro
v
e
m

e
n
t

C
o
m

p
a
re

d
 t

o
 F

ix
e
d

 (
%

)

Number of HNs/Input Query Rate/
Replication Factor

Average
Median
99th Percentile

Figure 13: Comparing performance of Uniform Replication
with Getafix. Replication factor (RF) chosen such that storage
is in the ballpark of Getafix.

9

5.5 Benefit From Garbage Collection

 0

 10

 20

 30

 40

 50

 60

50 100 150 200

Im
p

ro
v
e
m

e
n
t

C
o
m

p
a
re

d
 T

o
 w

/o
 G

C
(%

)

Disk Size (MB)

95th Percentile
99th Percentile

Figure 14: Improvement in tail latency for Getafix with GC
compared to without GC.

Since the frontend tier has far less storage space than the back-
end tier, garbage collection of unused segments from the frontend
tier is critical for performance (to allow newly popular segments to
continue being loaded into the frontend). We evaluate this by scal-
ing down disk space and the workload so that the experiments run
in a reasonable amount of time. We chose 3 HNs with a combined
space ranging from 150 MB to 600 MB. We ingest data for the first
30 minutes along with queries and then run another batch workload
for 30 minutes.

Figure 14 plots the tail latencies (95th and 99th percentile) ob-
served as we increase the disk size. We compare against Getafix
without garbage collection. The tail latencies improve by about
25% to 55% when garbage collection is enabled. As we increase
the storage size, the frontend tier becomes less saturated, thus re-
ducing the marginal gain from garbage collection. Thus we rec-
ommend that garbage collection be enabled especially when the
frontend tier is expected to be saturated, e.g., when there is a large
differential between backend and frontend storage sizes, or when
queries have less locality.

5.6 Broker Polling Period

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300

9
9

th
 P

e
rc

e
n
ti

le
 Q

u
e
ry

 L
a
te

n
cy

 (
m

s)

Broker Polling Period (s)

Figure 15: Tail latencies affected by Broker polling period

As discussed in §4.1, brokers poll latest routing information pe-
riodically to update segment routing tables. We justify why we
chose 20 s as the default polling period. Figure 15 investigates
the effect of changing the polling period (Getafix synthetic work-
load with 2500 qps on 15 HNs with Getafix MODIFIEDBESTFIT

run every 1 minute. Data points at 5 s, 20 s, and 1, 2, 5 mins).
Polling periods at or below 60 s give comparable latencies. Polling
periods longer than this threshold cause an increase in tail latency
because of a mismatch with MODIFIEDBESTFIT frequency (once
a minute), and the resulting stale routing tables at the broker. We
chose 20 s as the default broker polling period because it is about
midway through the stable range.

5.7 Benefit of Getafix Routing Strategy

 0

 20

 40

 60

 80

 100

10HN
1750qps

15HN
2500qps

20HN
3250qps

Im
p

ro
v
e
m

e
n
t

C
o
m

p
a
re

d
 t

o
 R

a
n
d
o
m

 (
%

)

Number of HNs/Input Query Rate

Average
95th Percentile
99th Percentile

Figure 16: Comparing Getafix Routing Strategy with Random.

Getafix uses a custom routing scheme (§4.1) based on the result
generated by MODIFIEDBESTFIT algorithm. We now evaluate the
benefit of using tailored routing strategy. To compare, we replaced
Getafix’s query routing with a random scheme where we pick a
random node from all nodes hosting a segment replica to route a
query, however the replication strategy stays the same as original
Getafix. We ran streaming experiments with a 30 minute ingestion
and query generation.

Figure 16 plots the overall improvement observed in tail laten-
cies and average latency for vanilla Getafix compared with the
modified Getafix running the random scheme. We observe an im-
provement of 35% at the tail as we increase both cluster capacity
and query injection rate. We conclude that it is important to use a
routing strategy that is coupled with the replication location strat-
egy. Our competing random routing is unaware, and hence leads to
query bottlenecks at multiple nodes, prolonging latency especially
at the tail.

6. RELATED WORK
Current distributed analytics engines [17, 23, 25, 33, 35, 45]

largely decouple data management from the query routing, in-
stead focusing on query optimization techniques. Newer systems
like Druid [45], Pinot [17], etc., use a tiered storage architecture,
where effectively utilizing the storage in frontend compute nodes
is paramount to achieving good query performance. Our system
does intelligent segment placement (using popularity), and couples
query routing with it.

Data popularity for replication has been looked at before. Nec-
tar [28] trades off storage for CPU by not storing unpopular data,
instead, recomputing it on the fly. In our setting neither queries
generate intermediate data nor can our input data be regenerated,
so Nectar’s techniques do not apply. Scarlett [24] uses popularity
for deciding replication of files in batch processing systems, and
we have implemented its techniques and shown Getafix performs

10

better. Other works [39, 42] have used performance SLAs to de-
termine the number of replicas and how to assign them among dif-
ferent hosts; Getafix could be extended to satisfy SLAs (but this is
beyond our scope here).

Adaptive schemes have been used for replicating read/write ob-
jects to improve operation latency in databases [44]. They have also
been implemented for memory caching systems [29] to achieve bet-
ter cache performance under skewed data popularity. In interactive
data analytics engines, since data is immutable, our adaptive repli-
cation tries to optimize storage and network overheads involved in
loading and storing this data. Facebook’s f4 [36] uses erasure codes
for “warm” BLOB data like photos, videos, etc., to reduce storage
overhead while still ensuring fault tolerance. These are optimiza-
tions at the deep storage tier and orthogonal to our work. Parallel
work like BlowFish [32], have looked at reducing storage by com-
pressing data while still providing guarantees on performance. It is
complementary to our approach and can be combined with Getafix.

Workload-aware data partitioning and replication has been ex-
plored in Schism [27], whose techniques minimize cross-partition
transactions in graph databases. E-Store [41] proposes an elastic
partition solution for OLTP databases by partitioning data into two
tiers. The idea is to assign data with different levels of popularity
into different sizes of data chunks so that the system can smoothly
handle load peaks and popularity skew. As mentioned earlier we
believe this approach is ad-hoc and that an adaptive strategy like
Getafix presents a system that is easier to manage. There are other
works which look at adaptive partitioning for OLTP systems [37]
and NoSQL databases [26] respectively, however they do not ex-
plore Druid-like interactive analytics engines.

7. ACKNOWLEDGMENTS
This work was supported in part by the following grants: NSF

CNS 1319527, NSF CCF 0964471, AFOSR/AFRL FA8750-11-2-
0084, and a generous gift from Microsoft.

8. SUMMARY
We have presented techniques intended for interactive data ana-

lytics engines like Metamarkets/Yahoo!’s Druid, Amazon Redshift,
and LinkedIn’s Pinot. Our techniques use latest (running) popular-
ity of data segments to determine their placement and replication
level at compute nodes, and route queries to appropriately to these
nodes. Our solution to the static query/segment placement problem
is provably optimal in both query latency and total storage space
used. Our system, called Getafix, realizes the solution to the dy-
namic version of the problem, and effectively integrates adaptive
and continuous segment placement/replication with query routing
and garbage collection. We implemented Getafix into Druid, the
most popular open-source interactive analytics engine. Our exper-
iments use both synthetic traces and production traces from Ya-
hoo!’s production Druid cluster. Compared to the best existing
techniques (Scarlett) Getafix either improves storage space at both
the median and tail by 2× to 3.5× while achieving comparable
query latency. Compared to the default strategies that use uniform
replication, Getafix is 20-60% faster under the same storage con-
straints.

9. REFERENCES
[1] Amazon Redshift.

https://aws.amazon.com/redshift/. visited on
2016-3-2.

[2] Amazon Redshift Customer Success. https://aws.
amazon.com/redshift/customer-success/.
visited on 2017-2-12.

[3] Amazon S3. https://aws.amazon.com/s3/. visited
on 2017-2-26.

[4] Apache Flink. https://flink.apache.org. visited
on 2017-2-26.

[5] Apache Samza. http://samza.apache.org. visited
on 2017-2-26.

[6] Apache Storm. http://storm.apache.org. visited on
2017-2-26.

[7] Beyond Hadoop at Yahoo!: Interactive analytics with Druid.
https:
//conferences.oreilly.com/strata/strata-
ny-2016/public/schedule/detail/51640.
visited on 2017-2-12.

[8] Bin Packing Problem. https://en.wikipedia.org/
wiki/Bin_packing_problem. visited on 2016-3-2.

[9] Docker. https://www.docker.com/. visited on
2017-3-1.

[10] Emulab. https://wiki.emulab.net/wiki/d430.
visited on 2016-3-2.

[11] Flurry.
https://developer.yahoo.com/flurry/docs/.
visited on 2017-2-26.

[12] Fragmentation (computing). https://en.wikipedia.
org/wiki/Fragmentation_(computing). visited
on 2017-3-1.

[13] Global Streaming Analytics Market Forecast & Analysis
2015-2020. https://tinyurl.com/hgbvajf. visited
on 2017-2-12.

[14] Hadoop. https://hadoop.apache.org. visited on
2017-2-26.

[15] Hungarian algorithm. http://en.wikipedia.org/
wiki/Hungarian_algorithm. visited on 2015-1-5.

[16] LinkedIn. http://linkedin.com. visited on
2017-2-26.

[17] LinkedIn Pinot.
https://github.com/linkedin/pinot. visited on
2017-2-26.

[18] MySQL. https://www.mysql.com. visited on
2017-3-1.

[19] Pinterest. http://pinterest.com. visited on
2017-2-26.

[20] Powered by Druid.
http://druid.io/druid-powered.html. visited
on 2017-2-12.

[21] Yahoo! https://www.yahoo.com. visited on
2017-2-26.

[22] Y. Ahmad, B. Berg, U. Cetintemel, M. Humphrey, J.-H.
Hwang, A. Jhingran, A. Maskey, O. Papaemmanouil,
A. Rasin, N. Tatbul, W. Xing, Y. Xing, and S. Zdonik.
Distributed operation in the Borealis stream processing
engine. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’05, pages 882–884, New York, NY, USA, 2005. ACM.

[23] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,
F. Perry, E. Schmidt, and S. Whittle. The dataflow model: A
practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing.

11

https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/customer-success/
https://aws.amazon.com/redshift/customer-success/
https://aws.amazon.com/s3/
https://flink.apache.org
http://samza.apache.org
http://storm.apache.org
https://conferences.oreilly.com/strata/strata-ny-2016/public/schedule/detail/51640
https://conferences.oreilly.com/strata/strata-ny-2016/public/schedule/detail/51640
https://conferences.oreilly.com/strata/strata-ny-2016/public/schedule/detail/51640
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://www.docker.com/
https://wiki.emulab.net/wiki/d430
https://developer.yahoo.com/flurry/docs/
https://en.wikipedia.org/wiki/Fragmentation_(computing)
https://en.wikipedia.org/wiki/Fragmentation_(computing)
https://tinyurl.com/hgbvajf
https://hadoop.apache.org
http://en.wikipedia.org/wiki/Hungarian_algorithm
http://en.wikipedia.org/wiki/Hungarian_algorithm
http://linkedin.com
https://github.com/linkedin/pinot
https://www.mysql.com
http://pinterest.com
http://druid.io/druid-powered.html
https://www.yahoo.com

Proc. VLDB Endowment, 8(12):1792–1803, Aug. 2015.
[24] G. Ananthanarayanan, S. Agarwal, S. Kandula,

A. Greenberg, I. Stoica, D. Harlan, and E. Harris. Scarlett:
Coping with skewed content popularity in Mapreduce
clusters. In Proceedings of the Sixth Conference on
Computer Systems, EuroSys ’11, pages 287–300, New York,
NY, USA, 2011. ACM.

[25] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine,
D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing. Trill:
A high-performance incremental query processor for diverse
analytics. Proc. VLDB Endowment, 8(4):401–412, Dec.
2014.

[26] F. Cruz, F. Maia, M. Matos, R. Oliveira, J. a. Paulo,
J. Pereira, and R. Vilaça. Met: Workload aware elasticity for
NoSQL. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages
183–196, New York, NY, USA, 2013. ACM.

[27] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: A
workload-driven approach to database replication and
partitioning. Proc. VLDB Endowment, 3(1-2):48–57, Sept.
2010.

[28] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and
L. Zhuang. Nectar: Automatic management of data and
computation in datacenters. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 75–88, Berkeley, CA,
USA, 2010. USENIX Association.

[29] Y.-J. Hong and M. Thottethodi. Understanding and
mitigating the impact of load imbalance in the memory
caching tier. In Proceedings of the 4th Annual Symposium on
Cloud Computing, SOCC ’13, pages 13:1–13:17, New York,
NY, USA, 2013. ACM.

[30] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In
Proceedings of the 2010 USENIX Conference on USENIX
Annual Technical Conference, USENIXATC’10, pages
11–11, Berkeley, CA, USA, 2010. USENIX Association.

[31] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building
blocks. In Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys
’07, pages 59–72, New York, NY, USA, 2007. ACM.

[32] A. Khandelwal, R. Agarwal, and I. Stoica. Blowfish:
Dynamic storage-performance tradeoff in data stores. In
Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation, NSDI’16, pages
485–500, Berkeley, CA, USA, 2016. USENIX Association.

[33] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li,
I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder.
Impala: A modern, open-source SQL engine for hadoop. In
CIDR 2015, 7th Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 4-7, 2015,
Online Proceedings, 2015.

[34] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg,

S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja. Twitter
Heron: Stream processing at scale. In Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 239–250, New
York, NY, USA, 2015. ACM.

[35] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of
web-scale datasets. Proc. VLDB Endowment,
3(1-2):330–339, Sept. 2010.

[36] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,
S. Pan, S. Shankar, V. Sivakumar, L. Tang, and S. Kumar. f4:
Facebook’s warm blob storage system. In Proceedings of the
11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 383–398, Berkeley, CA,
USA, 2014. USENIX Association.

[37] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP
systems. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’12, pages 61–72, New York, NY, USA, 2012. ACM.

[38] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop distributed file system. In Proceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), MSST ’10, pages 1–10, Washington,
DC, USA, 2010. IEEE Computer Society.

[39] G. Soundararajan, C. Amza, and A. Goel. Database
replication policies for dynamic content applications. In
Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, EuroSys ’06, pages
89–102, New York, NY, USA, 2006. ACM.

[40] W. Stallings. Operating Systems: Internals and Design
Principles— Edition: 5. Pearson, 2005.

[41] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore,
A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-store:
Fine-grained elastic partitioning for distributed transaction
processing systems. Proc. VLDB Endowment, 8(3):245–256,
Nov. 2014.

[42] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan,
M. K. Aguilera, and H. Abu-Libdeh. Consistency-based
service level agreements for cloud storage. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 309–324, New York, NY, USA,
2013. ACM.

[43] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems
and networks. In Proc. of the Fifth Symposium on Operating
Systems Design and Implementation, pages 255–270,
Boston, MA, Dec. 2002. USENIX Association.

[44] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data
replication algorithm. ACM Transactions on Database
Systems, 22(2):255–314, June 1997.

[45] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and
D. Ganguli. Druid: A real-time analytical data store. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14, pages

157–168, New York, NY, USA, 2014. ACM.

12

	Introduction
	Background
	System Model
	Workload Insights

	Static Version of Segment Placement Problem
	Formulation: Static Version of Problem
	Solution
	Optimality Proof
	Balls and Bin Problem
	Proofs

	Getafix: System Design
	Overview
	Segment Loading
	Matching-based Placement
	Lazy Deletion and Garbage Collection
	Fault Tolerance

	Evaluation
	Methodology
	Comparing Getafix with Scarlett
	Storge-Latency Tradeoff
	Getafix Vs. Uniform Replication Under Similar Storage
	Benefit From Garbage Collection
	Broker Polling Period
	Benefit of Getafix Routing Strategy

	Related Work
	Acknowledgments
	Summary
	References

