
Henge: Intent-driven Multi-Tenant Stream Processing
Faria Kalim

University of Illinois at Urbana
Champaign

kalim2@illinois.edu

Le Xu
University of Illinois at Urbana

Champaign
lexu1@illinois.edu

Sharanya Bathey
Amazon.com Services, Inc.

sharanyb@amazon.com

Richa Meherwal
phData, Inc.

richa@phdata.io

Indranil Gupta
University of Illinois at Urbana

Champaign
indy@illinois.edu

ABSTRACT
We present Henge, a system to support intent-based multi-tenancy
in modern distributed stream processing systems. Henge supports
multi-tenancy as a first-class citizen: everyone in an organization
can now submit their stream processing jobs to a single, shared,
consolidated cluster. Secondly, Henge allows each job to specify its
own intents (i.e., requirements) as a Service Level Objective (SLO)
that captures latency and/or throughput needs. In such an intent-
driven multi-tenant cluster, the Henge scheduler adapts continually
to meet jobs’ respective SLOs in spite of limited cluster resources,
and under dynamically varying workloads. SLOs are soft and are
based on utility functions. Henge’s overall goal is to maximize the
total system utility achieved by all jobs in the system. Henge is
integrated into Apache Storm and we present experimental results
using both production jobs from Yahoo! and real datasets from
Twitter.

CCS CONCEPTS
• Computer systems organization → Distributed architectures;

KEYWORDS
Stream Processing, Multi-Tenancy, Resource Management, Intents,
Service Level Objectives

ACM Reference Format:
Faria Kalim, Le Xu, Sharanya Bathey, Richa Meherwal, and Indranil Gupta.
2018. Henge: Intent-driven Multi-Tenant Stream Processing. In Proceedings
of SoCC ’18: ACM Symposium on Cloud Computing, Carlsbad, CA, USA,
October 11–13, 2018 (SoCC ’18), 14 pages.
https://doi.org/10.1145/3267809.3267832

1 INTRODUCTION
Modern distributed stream processing systems use a cluster to pro-
cess continuously-arriving data streams in real time, from Web data
to social network streams. Multiple companies use Apache Storm [4]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267832

(Yahoo!/Oath, Weather Channel, Alibaba, Baidu, WebMD, etc.),
Twitter uses Heron [54], LinkedIn relies on Samza [3] and oth-
ers use Apache Flink [1]. These systems provide high-throughput
and low-latency processing of streaming data from advertisement
pipelines (internal use at Yahoo!), social network posts (LinkedIn,
Twitter), geospatial data (Twitter), etc.

While stream processing systems for clusters have been around
for decades [18, 35], neither classical nor modern distributed stream
processing systems support intent-driven multi-tenancy. We tease
apart these two terms. First, multi-tenancy allows multiple jobs
to share a single consolidated cluster. Because this capability is
lacking in stream processing systems today, many companies (e.g.,
Yahoo! [6]) over-provision the stream processing cluster and then
physically apportion it among tenants (often based on team priority).
Besides higher cost, this entails manual administration of multiple
clusters, caps on allocation by the sysadmin, and manual monitoring
of job behavior by each deployer.

Multi-tenancy is attractive as it reduces acquisition costs and
allows sysadmins to only manage a single consolidated cluster. In in-
dustry terms, multi-tenancy reduces capital and operational expenses
(Capex & Opex), lowers total cost of ownership (TCO), increases
resource utilization, and allows jobs to elastically scale based on
needs. Multi-tenancy has been explored for areas such as key-value
stores [73], storage systems [81], batch processing [80], and oth-
ers [58], yet it remains a vital need in modern stream processing
systems.

Secondly, we believe the deployer of each job should be able
to clearly specify their performance expectations as an intent to
the system, and it is the underlying engine’s responsibility to meet
this intent. This alleviates the developer’s burden of continually
monitoring their job and guessing how many resources it needs.
Modern distributed stream processing systems are very primitive
and do not admit intents.

We allow each job in a multi-tenant environment to specify its own
intent as a Service Level Objective (SLO) [44]. It is critical that the
metrics in an SLO be user-facing, i.e., understandable and settable
by lay users such as a deployer who is not intimately familiar with
the innards of the system and scheduler. For instance, SLO metrics
can capture latency and throughput expectations. SLOs should not
include internal metrics like queue lengths or CPU utilization as
these can vary depending on the software, cluster, and job mix1.

1However, these latter metrics can be monitored and used internally by the scheduler
for self-adaptation.

249

https://doi.org/10.1145/3267809.3267832
https://doi.org/10.1145/3267809.3267832

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA F. Kalim et al.

Business Use Case SLO Type & Value

Bloomberg
High Frequency Trading Latency < Tens of ms
Updating top-k recent news articles on website Latency < 1 min.
Combining updates into one email sent per subscriber Throughput > 40K messages/s [64]

Uber
Determining price of a ride on the fly, identifying surge periods Latency < 5 s
Analyzing earnings over time Throughput > 10K rides/hr. [16]

The Weather
Channel

Monitoring natural disasters in real-time Latency < 30 s
Processing collected data for forecasts Throughput > 100K messages/min. [10]

WebMD
Monitoring blogs to provide real-time updates Latency < 10 min.
Search indexing related websites Throughput: index new sites at the rate found

E-Commerce
Websites

Counting ad-clicks Latency: update click counts every second
Processing logs at Alipay Throughput > 6 TB/day [15]

Table 1: Stream Processing: Use Cases and Possible SLO Types.

SCHEDULERS JOBS MULTI-
TENANT?

USER-FACING SLOS?

MESOS [41] General ✓ ✗ Uses Reservations: CPU, Mem, Disk, Ports
YARN [80] General ✓ ✗ Uses Reservations: CPU, Mem, Disk
AURORA [17] Streaming ✓ ✓ For Single Node Environment Only
BOREALIS [18] Streaming ✗ ✓ Latency, Throughput, Others
R-STORM [66] Streaming ✗ ✗ Schedules based on: CPU, Mem, Band-

width
HENGE Streaming ✓ ✓ Latency, Throughput, Hybrid

Table 2: Henge vs. Existing Multi-Tenant Schedulers.

We believe lay users should not have to grapple with such complex
metrics.

While there are myriad ways to specify SLOs (including po-
tentially declarative languages paralleling SQL), our paper is best
seen as one contributing mechanisms that are pivotal for building a
truly intent-based stream processing system. Our latency SLOs and
throughput SLOs are immediately useful. Time-sensitive jobs (e.g.,
those related to an ongoing ad campaign) are latency-sensitive and
will specify latency SLOs, while longer running jobs (e.g., sentiment
analysis of trending topics) will have throughput SLOs. Table 1 sum-
marizes several real use cases spanning different SLO requirements.

We present Henge, the first scheduler to support both multi-
tenancy and per-job intents (SLOs) for modern stream processing
engines. Henge has to tackle several challenges. In a cluster of lim-
ited resources, Henge needs to continually adapt to meet jobs’ SLOs,
both under natural system fluctuations, and input rate changes due
to diurnal patterns or sudden spikes. While attempting to maximize
the system’s overall SLO achievement, Henge needs to prevent non-
performing topologies from hogging cluster resources. It needs to
scale with cluster size and jobs, and work well under failures.

Table 2 compares Henge with multi-tenant schedulers that are
generic (Mesos, Yarn), as well as those that are stream processing-
specific (Aurora, Borealis and R-Storm). Generic schedulers largely
use reservation-based approaches to specify intents. A reservation is
an explicit request to hold a specified amount of cluster resources
for a given duration [29]. Besides not being user-facing, reservations
are known to be hard to estimate even for a job with a static work-
load [45], let alone the dynamic workloads prevalent in streaming
applications. Classical stream processing systems are either lim-
ited to a single node environment (Aurora), or lack multi-tenant

implementations (e.g., Borealis has a multi-tenant proposal, but no
associated implementation). R-Storm [66] is resource-aware Storm
that adapts jobs based on CPU, memory, and bandwidth, but does
not support user-facing SLOs.

Fig. 1: Benefits of enabling Henge in Apache Storm.

Fig. 1 depicts the twin benefits from Henge: dollar cost savings
from multi-tenancy, and higher SLO satisfaction. Concretely, in the
workload considered (5 jobs), x=100% represents the minimum
resources needed in a single-tenant version of Storm (each job gets
its own cluster) to reach 100% utility, i.e., satisfy all SLOs. First,
compared to single-tenant Storm, Henge can save 60% of resource
costs (x=40%) and still reach 93.5% utility. It can satisfy 100%
of SLOs at resource savings of 40% (x=60%). Second, compared
to multi-tenant vanilla Storm, Henge achieves significantly higher
SLO satisfaction (e.g., 6.7× better at x=40%). Considering that the
streaming analytics market is expected to grow to $13.7 billion by
2021 [59], the 40%-60% dollar cost savings from Henge will have a
significant impact on profit margins.

This paper makes the following contributions:

• We present Henge, the first scheduler for intent-based multi-
tenancy in distributed stream processing.

• We define and calculate a new throughput SLO metric that is
input-rate-independent, called “juice".

• We define SLOs via utility functions.

• We describe Henge’s implementation in Storm [4].

250

Henge: Intent-driven Multi-Tenant Stream Processing SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

• We evaluate Henge using workloads from Yahoo! production
Storm topologies, and Twitter datasets.

2 HENGE SUMMARY
We now summarize the novel ideas in Henge.
Juice: As input rates vary over time, specifying a throughput SLO
as an absolute value is impractical. We define a new input rate-
independent metric for throughput SLOs called juice. We show how
Henge calculates juice for arbitrary topologies (Section 6).

Juice lies in the interval [0, 1] and captures the ratio of processing
rate to input rate: a value of 1.0 is ideal and implies that the rate
of incoming tuples equals rate of tuples processed by the job. Con-
versely, a value less than 1 indicates that tuples are building up in
queues, waiting to be processed.

Throughput SLOs contain a minimum threshold for juice, making
the SLO independent of input rate. We consider processing rate
instead of output rate as this generalizes to cases where input tuples
may be filtered or modified: thus, they affect results but are never
outputted.
SLOs: A job’s SLO can capture either latency or juice (or a combina-
tion of both). The SLO has: a) a threshold (min-juice or max-latency),
and b) a job priority. Henge combines these via a user-specifiable
utility function, inspired by soft real-time systems [52]. The utility
function maps current achieved performance (latency or juice) to a
value that represents the current benefit to the job. Thus, the function
captures the developer intent that a job attains full “utility” if its
SLO threshold is met and partial utility if not. Our utility functions
are monotonic: the closer the job is to its SLO threshold, the higher
its achieved maximum possible utility (Section 4).
State Space Exploration: Moving resources in a live cluster is
challenging. It entails a state space exploration where every step
has both: 1) a significant realization cost, as moving resources takes
time and affects jobs, and 2) a convergence cost, since the system
needs time to converge to steady state after a step. Henge adopts a
conservatively online approach where the next step is planned, exe-
cuted in the system, then the system is allowed to converge, and the
step’s effect is evaluated. Then, the cycle repeats. This conservative
exploration is a good match for modern stream processing clusters
because they are unpredictable and dynamic. Offline exploration
(e.g. simulated annealing) is time consuming and may make deci-
sions on a cluster using stale information (as the cluster has moved
on). Conversely, an aggressive online approach will over-react to
changes, and cause more problems than it solves.

The primary actions in our state machine (Section 5) are: 1)
Reconfiguration (give resources to jobs missing SLO), 2) Reduction
(take resources away from overprovisioned jobs satisfying SLO),
and 3) Reversion (give up an exploration path and revert to past good
configuration). Henge gives jobs additional resources proportionate
to how congested they are. Highly intrusive actions like reduction
are kept small in number and frequency.
Maximizing System Utility: Via these actions, Henge attempts
to continually improve each individual job and converge it to its
maximum achievable utility. Henge is amenable to different goals
for the cluster: either maximizing the minimum utility across jobs,
or maximizing the total achieved utility across all jobs. While the
former focuses on fairness, the latter allows more cost-effective use

of the cluster, which is especially useful since revenue is associated
with total utility of all jobs. Thus, Henge adopts the goal of maxi-
mizing total achieved utility summed across all jobs. Our approach
creates a weak form of Pareto efficiency [83]; in a system where
jobs compete for resources, Henge transfers resources among jobs
only if this will cause the total cluster’s utility to rise.
Preventing Resource Hogging: Topologies with stringent SLOs
may try to take over all the resources of the cluster. To mitigate this,
Henge prefers giving resources to topologies that: a) are farthest
from their SLOs, and b) continue to show utility improvements due
to recent Henge actions. This spreads resources across all wanting
jobs and mitigates starvation and resource hogging.

3 BACKGROUND
We describe our system model, fitting modern stream processing
engines like Storm [79], Heron [54], Flink [1] and Samza [3]. Stream
processing jobs are long-running. A stream processing job can be
logically interpreted as a topology, i.e., a directed acyclic graph of
operators (called bolts in Apache Storm)2. An operator is a logical
processing unit that applies user-defined functions on a stream of
tuples. Source operators (called spouts) pull input tuples from an
external source (e.g., Kafka [53]), while sink operators spew output
tuples (e.g., to affect dashboards). The sum of all spouts’ input rates
is the input rate of the topology, while the sum of all sinks’ output
rates is the output rate of the topology. Each operator is parallelized
via multiple tasks. Fig. 2 shows an example topology.

Spout Bolt A

Bolt C

Bolt B

Bolt D

Bolt C is congested and only processes
6000 tuples in time unit

10000
tuples

10000
tuples

8000
tuples

8000
tuples

6000 tuples

8000 tuples

Bolt A filters out 2000
tuples and sends 8000
tuples along each edge

Fig. 2: Sample Storm topology. Tuples processed per unit time. Edge la-
bels indicate number of tuples sent out by the parent operator to the child.
(Congestion described in Section 5.)

A topology is run on worker processes executing on each machine
in the cluster. Each worker process runs executors (threads) which
run tasks specific to one operator. Each thread processes streaming
data, one tuple at a time, forwarding output tuples to its child opera-
tors. Tuples are shuffled among threads (our system is agnostic).
Definitions: An outputted tuple O’s latency is the time between
it being outputted at the sink, and the arrival time of the latest
input tuple that directly influenced it. A topology’s latency is then
the average latency of tuples it outputs over a window of time. A
topology’s throughput is the number of tuples processed per unit
time.

4 SLOS AND UTILITY FUNCTIONS
A Service Level Objective (SLO) [13] in Henge is user-facing and
can be set without knowledge of internal cluster details. An SLO
specifies: a) an SLO threshold (min-throughput or max-latency);
2We use the terms job and topology interchangeably in this paper.

251

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA F. Kalim et al.

and b) a job priority. Henge girds these requirements together into a
utility function.

Utility functions are commonplace in distributed systems [57, 70,
89, 90]. In Henge, each job can have its own utility function—the
user can either reuse a stock utility function (like the knee function
we define below), or define their own. Henge’s utility function for
a job maps the current performance of the job to a current utility
value. Utility functions are attractive as they abstract away the type
of SLO metric that each topology has. Our approach allows Henge
to manage in a compatible manner a cluster with jobs of various
SLO types, SLO thresholds, priorities, and utility functions.

Currently, Henge supports both latency SLOs and throughput
SLOs (and hybrids thereof). (While Section 6 discusses juice as
an input-rate-independent throughput metric, here we assume an
arbitrary throughput metric.)

A utility function can also capture partial utility when the SLO
requirement is not being met. Our only requirement for utility func-
tions is that they must be monotonic. This captures more utility closer
to the SLO threshold. For a job with a latency SLO, the utility func-
tion must be monotonically non-increasing as latency rises. For a job
with a throughput SLO, it must be monotonically non-decreasing as
throughput rises.

A utility function typically has a maximum utility, achieved when
the SLO threshold is met, e.g., a job with an SLO threshold of 100
ms achieves maximum utility only if its latency is below 100 ms. To
stay monotonic, as latency grows above 100 ms, the utility function
can drop or plateau, but not rise.

The maximum utility value is based on (e.g., proportional to) job
priority. For instance, in Fig. 3a, topology T2 has twice the priority of
T1, and thus has twice the maximum utility (20 vs. 10). We assume
that priorities are fixed at submission time—although Henge can
generalize (Section 5.5).

Expected Utility of T1

Throughput
(or Juice) SLO

Current Utility of T2

Current Utility of T1

Expected Utility of T2
Expected
Utility of T3

Latency
SLO

Current
Utility of T3

Priority(T1) = P
Priority(T2) = 2P

a) b)

Fig. 3: Knee Utility functions for: (a) throughput, (b) latency.

Given these requirements, Henge allows a variety of utility func-
tions: linear, piece-wise linear, step functions, lognormal, etc. Utility
functions may not be continuous.

Users can pick any utility functions that are monotonic. For con-
creteness, our Henge implementation uses a piece-wise linear utility
function called a knee function. A knee function (Fig. 3) has two
parts: a plateau after the SLO threshold, and a sub-SLO for when
the job does not meet the threshold. Concretely, the achieved utility
for jobs with throughput and latency SLOs respectively, are:

Current Utility

Job Max U til ity
=min(1,

Current Throuдhput Metr ic
SLO Throuдhput Threshold

) (1)

Current Utility

Job Max U til ity
=min(1,

SLO Latency Threshold
Current Latency

) (2)

The sub-SLO is the last term inside “min". For throughput SLOs,
the sub-SLO is linear and arises from the origin point. For latency
SLOs, the sub-SLO is hyperbolic (y ∝ 1

x), allowing increasingly
smaller utilities as latencies rise. Fig. 3 shows an example of a
throughput SLO (Fig. 3a) and a latency SLO (Fig. 3b).

A utility function approach can also be used in Service Level
Agreements (SLAs), but these are beyond our scope.

5 HENGE STATE MACHINE
Henge uses a state machine for the entire cluster (Fig. 4). A cluster
is Converged if and only if either: a) all topologies have reached
their max utility (i.e., satisfy their SLO thresholds), or b) Henge
recognizes that no further actions will improve any topology’s per-
formance, and thus it reverts to the last best configuration. The last
clause guarantees that if external factors remain constant–topologies
are not added and input rates stay constant–Henge will converge. All
other cluster states are Not Converged.

To move among these two states, Henge uses three actions: Re-
configuration, Reduction, and Reversion.

Reconfiguration
or

Reduction
Converged

Total Current Utility < Total Max Utility

Reversion or Reconfiguration
Not

Converged

Fig. 4: Henge’s State Machine for the Cluster.

5.1 Reconfiguration
In the Not Converged state, a Reconfiguration action gives resources
to topologies missing their SLO. Reconfigurations occur in rounds,
executed periodically (currently 10 s). In each round, Henge sorts
all topologies missing their SLOs, in descending order of their maxi-
mum utility, with ties broken by preferring lower current utility. It
then greedily picks the head of this sorted queue to allocate resources
to. The performance of a chosen topology can be improved by giving
more resources to all of its operators that are congested i.e., those
that have insufficient resources, and thus are bottlenecks.
Measuring Congestion: We use operator capacity [14] to measure
congestion. (Henge is amenable to using other congestion metrics,
e.g., input queue sizes or ETP [87].) Operator capacity captures the
fraction of time that an operator spends processing tuples in a time
unit. Its values lie in the range [0.0, 1.0]. If an executor’s capacity is
near 1.0, then it is close to being congested.

Consider an executor E that runs several tasks of a topology
operator. Its capacity is calculated as:

CapacityE =
Executed TuplesE × Execute LatencyE

Unit T ime
(3)

where Unit Time is a time window. The numerator multiplies the
number of tuples executed in this window and their average execu-
tion latency to calculate the total time spent in executing those tuples.

252

Henge: Intent-driven Multi-Tenant Stream Processing SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Dividing the numerator by the time window tells us what fraction of
time the executor was busy processing tuples. The operator capacity
is then the maximum capacity across all of its executors. Henge
considers an operator to be congested if its capacity is above the
threshold of Operator Capacity Threshold = 0.3. This low value
increases the pool of possibilities, as more operators become candi-
dates for receiving resources.
Allocating Thread Resources: Henge allocates each congested
operator an additional number of threads that is proportional to its
congestion level based on the following equation:(

Current Operator Capacity
Operator Capacity Threshold

− 1
)
× 10 (4)

Reconfiguration is Conservative: Henge deploys a configuration
change to a single topology on the cluster, and waits for the measured
utilities to quiesce (this typically takes a minute in our configura-
tions). No further actions are taken in the interim. It then measures
the total cluster utility again, and if utility improved, Henge con-
tinues its operations in further rounds, in the Not Converged State.
If total utility reaches the maximum value (the sum of maximum
utilities of all topologies), then Henge continues monitoring the re-
cently configured topologies for a while (4 subsequent rounds in our
setting). If they remain stable, Henge moves to the Converged state.

A topology may improve only marginally after receiving more
resources in a reconfiguration. If a job’s utility increases by less than
a factor (1 + ∆), Henge retains the reconfiguration but skips this
particular topology in the near future rounds. ∆ = 5% in our imple-
mentation. This topology may have plateaued in terms of benefiting
from more threads. As the cluster is dynamic, the topology’s black-
listing is allowed to expire after a while (1 hour in our settings), after
which the topology again becomes a candidate for reconfiguration.

As reconfigurations are exploratory steps in the state space search,
total system utility might decrease after a step. Henge employs two
actions called Reduction and Reversion to handle such cases.

5.2 Reduction
If a Reconfiguration causes total system utility to drop, the next
action is either a Reduction or a Reversion. Henge performs Reduc-
tion if and only if all of these conditions are true: (a) the cluster is
congested (described below), (b) there is at least one SLO-satisfying
topology, and (c) there is no past history of a Reduction action. Note
that (c) implies that there is at most one Reduction (until an external
factor such as workload changes) cluster-wide.

CPU load is defined as the number of processes that are running
or runnable on a machine [7]. A machine’s load should be less than
or equal to the number of available cores, ensuring maximum uti-
lization and no over-subscription. Thus, Henge considers a machine
to be congested if its CPU load exceeds its number of cores. Henge
considers a cluster to be congested when a majority of its machines
are congested.

If a Reconfiguration drops utility and results in a congested cluster,
Henge executes Reduction to reduce congestion. For all topologies
meeting their SLOs, Henge finds all their un-congested operators
(except spouts) and reduces their parallelism by a large amount (80%
in our settings). If this results in further SLO misses, such topologies
will be candidates in future reconfigurations to improve their SLO.

Henge limits Reduction to once per cluster to minimize intrusion;
this is reset if external factors change (new jobs are added or input
rate changes etc.).

Like backoff mechanisms [42], massive reduction is the only way
to free many resources at once for reconfigurations. Fewer threads
also make the system more efficient because they reduce the number
of OS context switches.

Right after a reduction, if the next reconfiguration drops cluster
utility again while keeping the cluster congested (measured using
CPU load), Henge recognizes that performing another reduction is
futile. This is a typical “lockout" case, and Henge resolves it by
Reversion.

5.3 Reversion
If a Reconfiguration drops utility and a Reduction is not possible
(meaning that at least one of the conditions (a)-(c) in Section 5.2 is
false), Henge performs Reversion.

Henge sorts through its history of Reconfigurations and picks the
one that maximized system utility. It moves the system back to this
past configuration by resetting the resource allocations of all jobs
to values in this configuration and moves to the Converged state.
Here, Henge essentially concludes that it is impossible to further
optimize cluster utility, given this workload. Henge maintains this
configuration until changes like further SLO violations occur, which
necessitate reconfigurations.

If a large enough drop (> 5%) in utility occurs in this Converged
state (e.g., due to new jobs, or input rate changes), Henge infers
that as reconfigurations cannot be a cause of this drop, the workload
of topologies must have changed. As all past actions no longer
apply to this new workload, Henge forgets all history of past actions
and moves to the Not Converged state. In future reversions, such
forgotten states will not be available. This reset allows Henge to start
its state space search afresh.

5.4 Proof of Convergence
We prove the convergence of Henge. As is usually necessary in
proofs of real implementation, we make some assumptions. Our
implementation and subsequent evaluation in Section 8 removes all
assumptions, and demonstrates that Henge works well in practice.

Recall that a converged state is one where Henge can take no
further actions (Fig. 4). We define a well-behaved cluster as one
where: (a) a Reduction action on a job (Section 5.2) does not cause
its SLO to be violated (recall that reductions are only done on jobs
already satisfying their SLO), and (b) between consecutive Henge
steps, the performance of each topology (throughput and/or latency),
measured via its utility, remains stable.

THEOREM 1. Given any initial state on a well-behaved cluster
with no job arrivals or departures, and sufficiently long black-listing,
Henge converges in finite steps.

PROOF. Consider a cluster with N jobs (topologies), J1 . . . JN .
Henge ensures that in each step of its state machine, at least one
topology is affected. This effect may be one of four kinds—(i) job
Ji is reconfigured (Section 5.1) and its utility improves by at least 3

a factor of (1 + ∆), or (ii) Ji is reconfigured and its utility improves
by less than a factor of (1 + ∆), or (iii) the cluster is subjected to a

3See definition of ∆ in Section 5.1. In our implementation ∆ = 5%.

253

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA F. Kalim et al.

reduction (Section 5.2), or (iv) the cluster is subjected to a reversion
(Section 5.3).

Consider the set S of topologies not satisfying their SLO. We
claim that the cardinality of S is monotonically non-increasing as
long as steps under only cases (i)-(iii) are applied. We explain why.
A case (i) step can only remove from (never add to) S, if and only
if this step causes Ji to meet its SLO. A case (ii) step black-lists Ji
(Section 5.1) and removes it from S—as we assumed black-listing
lasts long enough, the monotonic property holds. Due to our well-
behaved cluster assumption (a), the monotonic property holds after a
reduction operation (case (iii)). Lastly, in between consecutive steps,
cardinality of S does not increase due to our well-behaved cluster
assumption (b).

Now consider case (i). For job i, let Init_Util(i) be its initial
utility, and Max_Util(i) be its maximum achievable utility (at SLO
threshold). Let:

F = Max
N

i=1

{
Max_Util(i)

Init_Util(i)

}
The initial number of jobs missing their SLOs is ≤ N . For a

topology Ji that converges to its SLO, Ji is subjected to at most
loд(1+∆)(F) reconfigurations under case (i) (until it meets its SLO).
For a topology Ji that becomes black-listed, it is subject to strictly
< loд(1+∆)(F) reconfigurations under case (i), along with an addi-
tional (last) reconfiguration under case (ii). Together, any job that
either meets its SLOs or becomes black-listed, is subject to at most
loд(1+∆)(F) steps under cases (i) or (ii).

Cluster-wide, there is at most one case (iii) reduction step (Sec-
tion 5.2). Finally, reversion in case (iv) is, if present, always the last
step in the entire cluster.

Putting these together, the total number of steps required for
Henge to converge is ≤ (N · loд(1+∆)(F) + 1 + 1) steps. Thus, Henge
converges in finite steps. □

Clause (b) in the well-behaved cluster assumption can be relaxed
to restate the proof (and theorem), by amending F to also include
the max of Max_U til (i)

Red_U til (i) for all jobs Ji whose SLO is violated due to
a reduction, where Red_Util(i) is Ji ’s utility right after its reduction.

5.5 Discussion
Online vs. Offline State Space Search: Henge uses an online state
space search. In fact, our early attempt at designing Henge was to
perform offline state space exploration, by using analytical models
to find relations of SLO metrics to job resource allocations.

However, the offline approach turned out to be impractical. Anal-
ysis and prediction is complex and inaccurate for stream process-
ing systems, which are very dynamic in nature. (This phenomenon
has also been observed in other distributed scheduling domains,
e.g., [24, 45, 65].) Fig. 5 shows two identical runs of the same Storm
job on 10 machines, where the job is given 28 extra threads at t=910
s. Latency drops to a lower value in run 2, but stays high in run 1.
This is due to differing CPU resource consumptions across the runs.
Generally, we find that natural fluctuations occur commonly in an
application’s throughput and latency; left to itself an application’s
performance changes and degrades gradually. This motivated us to
adopt Henge’s conservative online approach.

Reconfiguration

Fig. 5: Unpredictability in Modern Stream Processing Engines: Two
runs of the same topology (on 10 machines) being given the same extra
computational resources (28 threads, i.e., executors) at 910 s, react differ-
ently.

Tail Latencies: Henge can also support SLOs expressed as tail
latencies (e.g., 95th or 99th percentile). Utility functions are then
expressed in terms of tail latency.
Statefulness, Memory Bottlenecks: In most production use cases,
we have observed that operators are stateless and CPU-bound, and
our exposition so far is thus focused. Even so, Henge gracefully han-
dles stateful operators and memory-pressured nodes (Sections 8.3,
8.5). Stateful jobs can rebuild state after a reconfiguration as we
periodically checkpoint state to an external database. The orthogonal
problem of dynamically reconfiguring stateful operators is beyond
our scope and is an open direction [26].
“Magic" Parameters: Henge uses five parameters: capacity thresh-
old (Section 5.1), stability rounds (Section 5.1), improvement ∆
in utility for reconfiguration (Section 5.1), percentage reduction in
executors (Section 5.2), and percentage utility drop to move out of
converged state (Section 5.3). All of these parameters only affect
Henge’s convergence speed, not correctness.

Four of these five parameters have little effect on performance as
long as their values stay small. The percentage reduction in executors
may require minimal profiling. In our cluster, reducing a topology’s
executors by 90% caused SLO misses, while a 70% setting did not
alleviate CPU load much. Thus, we set this parameter to 80% in our
implementation, for all experimental workloads.
Henge as Indicator of Resource Crunches: While we do not per-
form admission control, Henge can nonetheless be used to identify
topologies that are overly hungry (e.g., high priority jobs that are
touched by many reconfiguration steps), and these could be black-
listed or removed. Additionally, Henge could be used as an indi-
cator that the cluster is oversubscribed and that additional cluster
resources are needed, e.g., many SLO violations, cluster utility rarely
approaches max utility, etc.
Setting Priorities: A consequence of priorities is that Henge will
prefer higher priority jobs at the expense of penalizing lower priority
jobs, especially when the cluster is congested. We recommend that
any jobs that wish to absolutely avoid starvation come associated
with medium to high priorities. This is feasible as we envision Henge
to be used internally in companies where job priorities are set either
consensually or by upper management.
Dynamic Priorities: While we have assumed for simplicity that
a job’s priority is fixed at its submission time (Section 4), Henge
would still work if priorities were changed on the fly. Henge’s state

254

Henge: Intent-driven Multi-Tenant Stream Processing SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

machine and utility function approach are compatible with dynamic
priorities.

6 JUICE: DEFINITION AND ALGORITHM
As stated in Section 1, we wish to design a metric for throughput
SLOs that is independent of input rate. Henge uses a new metric
called juice. Juice defines the fraction of input data that is processed
by the topology per unit time. It lies in the interval [0, 1]. A value
of 1.0 means all the input data that arrived in the last time unit
has been processed. Thus, users can set throughput requirements
as percentages of input rate (Section 4). Henge then attempts to
maintain this even as input rates change.

Any algorithm that calculates juice should be:
1. Code Independent: It should be independent of the operators’
code, and should be calculate-able by only considering the number
of tuples generated by operators.
2. Rate Independent: It should be input-rate independent.
3. Topology Independent: It should be independent of the shape and
structure of the topology. It should be correct in spite of duplication,
merging, and splitting of tuples.
Juice Intuition: Juice is formulated to reflect the global processing
efficiency of a topology. An operator’s contribution to juice is the
proportion of input passed in originally from the source (i.e., from all
spouts) that it processed in a given time window. This is the impact
of that operator and its upstream operators on this input. The juice
of a topology is then the normalized sum of juice values of all its
sinks.
Juice Calculation: Henge calculates juice in configurable windows
of time (unit time). Source input tuples are those that arrive at a spout
in unit time. For each operator o in a topology that has n parents, we
define T io as the sum of tuples sent out from its ith parent per time
unit, and Eio as the number of tuples that operator o executed (per
time unit), from those received from parent i.

The per-operator contribution to juice, J so , is the proportion of
source input sent from spout s that operator o received and processed.
Given that J si is the juice of o’s ith parent, then J so is:

J so =
n∑
i=1

(
J si ×

Eio
T io

)
(5)

A spout s has no parents, and its juice: Js =
Es
Ts = 1.0.

In eq. 5, the fraction Eio
T i
o

reflects the proportion of tuples an op-
erator received from its parents, and processed successfully. If no
tuples are waiting in queues, this fraction is equal to 1.0. By multi-
plying this value with the parent’s juice we accumulate through the
topology the effect of all upstream operators.

We make two important observations. In the term Eio
T i
o

, it is critical
to take the denominator as the number of tuples sent by a parent
rather than received at the operator. This allows juice: a) to account
for data splitting at the parent (fork in the DAG), and b) to be reduced
by tuples dropped by the network. The numerator is the number of
processed tuples rather than the number of output tuples – this allows
juice to generalize to operator types whose processing may drop
tuples (e.g., filter).

Given all operator juice values, a topology’s juice can be calcu-
lated by normalizing w.r.t. number of spouts:∑

Sinks si , Spouts sj
(J
sj
si)

Total Number o f Spouts
(6)

If no tuples are lost in the system, the numerator equals the num-
ber of spouts. To ensure that juice stays below 1.0, we normalize the
sum with the number of spouts.
Example 1: Consider Fig. 2 in Section 3. J sA = 1 × 10K

10K = 1 and
J sB = J sA × 8K

16K = 0.5. B has a TA
B of 16K and not 8K, since B only

receives half the tuples that were sent out by operator A.
The value of J sB = 0.5 indicates that B processed only half the

tuples sent out by parent A. This occurred as the parent’s output was
split among children. (If alternately, B and C were sinks and D were
absent from the topology, then their juice values would sum up to
the topology’s juice.). D has two parents: B and C. C is only able
to process 6K as it is congested. Thus, J sC = J sA × 6K

16K = 0.375. TCD
thus becomes 6K. Hence, JCD = 0.375 × 6K

6K = 0.375. JBD is simply
0.5× 8K

8K = 0.5. We sum the two and obtain J sD = 0.375+0.5 = 0.875.
It is less than 1.0 as C was unable to process all tuples due to
congestion.
Example 2 (Topology Juice with Duplication, Split, and Merge):
Due to space, we refer the reader to our tech report [46] for the
example.
Observations: First, while our description used unit time, our imple-
mentation calculates juice using a sliding window of 1 minute, col-
lecting data in sub-windows of 10 s. This needs only loose time syn-
chronization across nodes. Second, collecting data in sub-windows
implies that when short-lived bursts occur, Henge does not over-react.
and instead adjusts resources in a conservative manner. Concretely,
it reacts only if the burst is long-lived and stretches across multiple
sub-windows. Third, eq. 6 treats all processed tuples equally–instead,
a weighted sum could be used instead to capture differing priorities
among sinks. Fourth, processing guarantees (exactly, at least, at most
once) are orthogonal to juice. Our experiments use non-acked Storm
(at most once semantics), but Henge also works with acked Storm
(at least once semantics).

7 IMPLEMENTATION
We integrated Henge into Apache Storm [4]. Henge involves 3800
lines of Java code. It is an implementation of the predefined ISched-
uler interface. The scheduler runs in the Storm Nimbus daemon, and
is invoked by Nimbus every 10 seconds. We updated Storm Config
to let users set SLOs and utility functions for their topologies.

Fig. 6 shows Henge’s architecture. The Decision Maker imple-
ments the Henge state machine (Section 5). The Statistics Module
continuously calculates cluster and per-topology metrics e.g., the
number of tuples processed per task of an operator per topology, end-
to-end tuple latencies, and the CPU load per node. This information
is used to produce metrics such as juice and utility, which are passed
to the Decision Maker. The Decision Maker runs the state machine,
and sends commands to Nimbus to implement actions. The Statistics
Module also tracks past states so that reversion can be performed.

255

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA F. Kalim et al.

Statistics
Module

Decision
Maker

New
Schedule

Henge

Supervisor

Executor

Nimbus

Worker
Processes

Fig. 6: Henge Implementation in Storm

8 EVALUATION
We evaluate Henge with several workloads, topologies, and SLOs.
Further results are in our tech report [46].
Experimental Setup: By default, our experiments used the Emulab
cluster [82], with machines (2.4 GHz, 12 GB RAM) running Ubuntu
12.04 LTS, over a 1 Gbps network. A machine runs Zookeeper [5]
and Nimbus. Workers (Java processes running executors) are allotted
across 10 machines (we also evaluate scalability).

Transform

Sink

FilterSpout Join with
database

FilterAggregate

Fig. 7: PageLoad Topology from Yahoo!.

Bolt SinkBoltSpout

Bolt Sink

Bolt

Spout

Bolt

Linear Topology

Diamond Topology

Spout Bolt

Spout

Spout

Sink

Sink

Sink

Star Topology

Fig. 8: Three Microbenchmark Storm Topologies.

Topologies: We use a combination of production and microbench-
mark topologies. Production topologies include the “PageLoad"
topology from Yahoo! Inc. [87] (shown in Fig. 7), and WordCount.
Its operators are the most commonly used in production: filter-
ing, transformation, aggregation. For some evaluations, we also
use microbenchmark topologies (shown in Fig. 8) that are possible
sub-parts of larger topologies [87]; these are used in Section 8.4.1,
Fig. 16, and Section 8.5.

These topologies are representative of today’s workloads. All
topologies for modern stream processing engines that we have en-
countered in production, and in literature [6, 77], are linear (Fig. 7)
or at best linear-like (like Fig. 8). While Henge is built to handle

arbitrarily complex topologies (as long as they are DAGs), for prac-
ticality, we use the topologies just discussed.

The latency SLO thresholds in our experiments are in order of
milliseconds. Thus, we subject Henge to more constraints and stress
than the values listed in Table 1.

In each experimental run, we initially let topologies run for 900 s
without interference (to stabilize and to observe their performance
with vanilla Storm), and then enable Henge to take actions. All topol-
ogy SLOs use a knee utility function (Section 4). A knee function is
parameterized by the SLO threshold and the maximum utility value.
Hence, below we use “SLO” as a shorthand for the SLO threshold,
and specify the max utility value.
Storm Configuration: In experiments where we compare Henge
with Storm, we used Storm’s default scheduler and began the Storm
run with identical configuration (e.g., cluster size, number of execu-
tors) as the Henge run.

8.1 Henge Policy and Scheduling

8.1.1 Meeting SLOs.

T9 T8 T8 T7 T6 T5 T4T6 T3 T3 T2

T1 T1

Fig. 9: Maximizing Cluster Utility: Red (dotted) line is total system utility.
Blue (solid) line is magnified slope of the red line. Vertical lines are reconfig-
urations annotated by the job touched. Henge reconfigures higher max-utility
jobs first, leading to faster increase in system utility.

Maximizing Cluster Utility: To maximize total cluster utility,
Henge greedily prefers to reconfigure those jobs first which have a
higher max achievable utility (among those missing their SLOs). In
Fig. 9, we run 9 PageLoad topologies on a cluster, with max utility
values ranging from 10 to 90 in steps of 10. The SLO threshold for
all jobs is 60 ms. Henge first picks T9 (highest max utility of 90),
leading to a sharp increase in total cluster utility at 950 s. Then, it
continues in this greedy way. We observe some latent peaks when
jobs reconfigured in the past stabilize to their max utility. For in-
stance, at 1425 s we observe a sharp increase in the slope (solid) line
as T4 (reconfigured at 1331 s) reaches its SLO threshold. All jobs
meet their SLO in 15 minutes (900 s to 1800 s).
Hybrid SLOs: We evaluate a topology with a hybrid SLO that has
separate thresholds for latency and juice, and two corresponding
utility functions (Section 4) with identical max utility values. The
job’s utility is then the average of these two utilities.

Fig. 10 shows 10 (identical) PageLoad topologies with hybrid
SLOs running on a cluster of 10 machines. Each topology has SLO
thresholds of: juice 1.0, and latency 70 ms. The max utility value
of each topology is 35. Henge takes about 13 minutes (t=920 s to
t=1710 s) to reconfigure all topologies successfully to meet their

256

Henge: Intent-driven Multi-Tenant Stream Processing SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Maximum Utility T2 T5 T10 T3 T8 T4 T7 T1 T6 T9 T9 T9

Fig. 10: Hybrid SLOs: Henge Reconfiguration.

SLOs. 9 out of 10 topologies required a single reconfiguration, and
one (T9) required 3 reconfigurations.
Is convergence fast enough? Stream processing jobs run for long
periods. Practically, Henge’s convergence times are relatively quite
small. We ran 10 topologies over 48 hours with a diurnal workload
(details in next section). The total time taken by Henge’s actions,
summed across all topologies, was 2.4 hours. This is only 0.5% of the
total runtime summed across all topologies. The longest convergence
time (for any topology) was 16 minutes, which is only 0.56% of the
total runtime.

8.1.2 Handling Dynamic Workloads.

A. Spikes in Workload: Fig. 11 shows the effect of a workload
spike in Henge. Two different PageLoad topologies A and B are
subjected to input spikes. B’s workload spikes by 2 ×, starting from
3600 s. The spike lasts until 7200 s when A’s spike (also 2 ×) begins.
Each topology’s SLO is 80 ms with max utility is 35. Fig. 11 shows
that: i) output rates keep up for both topologies both during and after
the spikes, and ii) the utility stays maxed-out during the spikes. In
effect, Henge hides the effect of the input rate spike from the user.

Fig. 11: Spikes in Workload: Left y-axis shows total cluster utility (max
possible is 35× 2 = 70). Right y-axis shows the variation in workload as time
progresses.

B. Diurnal Workloads: Diurnal workloads are common for stream
processing, e.g., in e-commerce websites [30] and social media [61].
We generated a diurnal workload based on the distribution of the
SDSC-HTTP [12] and EPA-HTTP traces [9], injecting them into
PageLoad topologies. 5 jobs run with the SDSC-HTTP trace and
concurrently, 5 other jobs run with the EPA-HTTP trace. All jobs
have max-utility=35, and a latency SLO of 60 ms.

(a)

(b)

(c)

Fig. 12: Diurnal Workloads: a) Input and output rates vs time, for two diur-
nal workloads. b) Utility of job (reconfigured by Henge) with EPA workload,
c) CDF of SLO satisfaction for Henge, default Storm, & manual configura-
tion. Henge adapts during first cycle and fewer reconfigurations are needed
later.

Fig. 12 shows the result of running 48 hours of the trace (each
hour is mapped to 10 mins). In Fig. 12a, workloads increase from
hour 7 of day 1, reach their peak by hour 13 1

3 , and then fall. Henge
reconfigures all 10 jobs, reaching 89% of max cluster utility by hour
15.

Fig. 12b shows a topology running the EPA workload (other
topologies exhibited similar behavior). Observe how Henge recon-
figurations from hour 8 to 16 adapt to the fast changing workload.
This results in fewer SLO violations during the second peak (hours
32 to 40). Thus, Henge tackles diurnal workloads without extra
resources.

Fig. 12c shows the CDF of SLO satisfation for three systems.
Default Storm gives 0.0006% SLO satisfaction at the median, and
30.9% at the 90th percentile (meaning that 90% of the time, default
Storm provided at most 30.9% of the cluster’s max achievable util-
ity.). Henge yields 74.9%, 99.1%, and 100% SLO satisfaction at the
15th, 50th, and 90th percentiles respectively.

Henge is preferable over manual configurations. We manually
configured all topologies to meet their SLOs at median load. They
provide 66.5%, 99.8% and 100% SLO satisfaction at the 15th, 50th
and 90th percentiles respectively. Henge is better than manual con-
figurations from the 15th to 45th percentile, and comparable later.

Henge has an average of 88.12% SLO satisfaction rate, while de-
fault Storm and manually configured topologies provide an average
of 4.56% and 87.77% respectively. Thus, Henge gives 19.3× better

257

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA F. Kalim et al.

SLO satisfaction than default Storm and does better than manual
configuration.

8.2 Production Workloads
We configured the sizes of 5 PageLoad topologies based on a Yahoo!
Storm production cluster and Twitter datasets [20], shown in Table 3.
We use 20 nodes with 14 worker processes. For each topology, we
use an input rate proportional to its number of workers. T1-T4 run
sentiment analysis on Twitter workloads [20]. T5 processes logs at a
constant rate. Each topology has a latency SLO threshold of 60 ms
and max utility of 35.

Job Workload Workers Tasks
T1 Analysis (Egypt Unrest) 234 1729
T2 Analysis (London Riots) 31 459
T3 Analysis (Tsunami in Japan) 8 100
T4 Analysis (Hurricane Irene) 2 34
T5 Processing Topology 1 18

Table 3: Job and Workload Distributions in Experiments: Derived from
Yahoo! production clusters, using Twitter Datatsets for T1-T4. (Results in
Figure 13.)

This is an extremely constrained cluster where not all SLOs can be
met. Yet, Henge improves cluster utility. Fig. 13a shows the CDF of
the fraction of time each topology provided a given utility (including
the initial 900 s where Henge is held back). T5 shows the most
improvement (at the 5th percentile, it has 100% SLO satisfaction),
whereas T4 shows the worst performance (at the median, its utility is
24, which is 68.57% of 35). The median SLO satisfaction for T1-T3
ranges from 27.0 to 32.3 (77.3% and 92.2% respectively).
Reversion: Fig. 13b depicts Henge’s reversion. At 31710 s, the
system utility drops due to natural system fluctuations. This forces
Henge to reconfigure two topologies (T1, T4). Since system utility
continues to drop, Henge is forced to reduce a topology (T5), which
satisfies its SLO before and after reduction. As utility improves at
32042 s, Henge proceeds to reconfigure other topologies. However,
the last reconfiguration causes another drop in utility (at 32150 s).
Henge reverts to the configuration that had the highest utility (at
32090 s). After this point, total cluster utility stabilizes at 120 (68.6%
of max utility). Thus, even under scenarios where Henge is unable
to reach the max system utility it behaves gracefully, does not thrash,
and converges quickly.

8.2.1 Reacting to Natural Fluctuations.

Natural fluctuations can occur in a cluster due to load variations
that arise from interfering processes, disk IO, page swaps, etc. Fig. 14
shows such a scenario. We run 8 PageLoad topologies, 7 of which
have an SLO of 70 ms, and the 8th’s SLO is 10 ms. Henge resolves
congestion initially and stabilizes the cluster by 1000 s. At 21800 s,
CPU load increases sharply due to OS behaviors (beyond Henge’s
control). Due to the significant drop in cluster utility, Henge reduces
two SLO-achieving topologies. The reduction lets other topologies
recover within 20 minutes (by 23000 s). Henge converges the cluster
to the same total utility as before the CPU spike.

(a) CDF of fraction of total time that tenant topologies achieve given SLO.
Max utility for each topology is 35.

Reverts
last actionReductionT1 T4 T1 T4

(b) Reconfiguration at 32111 s causes drop in total system utility. Henge
reverts configuration of all tenants to that of 32042 s. Vertical lines show
Henge actions for given jobs.

Fig. 13: Henge on Production Workloads.

Maximum Utility

Load on machines during marked time

a)

b)

Reconfigurations

Reductions

Fig. 14: Handling CPU Load Spikes: a) Total cluster utility. b) Average
CPU load on machines in CPU spike interval.

8.3 Stateful Topologies
Henge handles stateful topologies gracefully. We ran four Word-
Count topologies with identical workload and configuration as T2 in
Table 3. Stateful topologies periodically checkpoint state to Redis
and have 240 ms latency SLOs. The other two topologies do not
persist state in an external store and have lower SLOs of 60 ms.
Initially, none of them meet their SLOs. Table 4 shows results after

258

Henge: Intent-driven Multi-Tenant Stream Processing SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Job Type Avg. Reconfig. Average Convergence
Rounds (Stdev) Time (Stdev)

Stateful 5.5 (0.6) 1358.7s (58.1s)
Stateless 4 (0.8) 1134.2s (210.5s)

Table 4: Stateful Topologies: Convergence Rounds and Times for a cluster
with Stateful and Stateless Topologies.

convergence. Stateful topologies take 1.5 extra reconfigurations to
converge to their SLO, and 19.8% more reconfiguration time. This
is due to checkpointing and recovery mechanisms, orthogonal to
Henge.

8.4 Scalability and Fault-tolerance

8.4.1 Scalability.

Increasing the Number of Topologies: Fig. 15 stresses Henge by
overloading the cluster with topologies over time. We start with 5
PageLoad jobs (latency SLO=70 ms, max utility=35), and add 20
more jobs at even hours.

Maximum Utility

Fig. 15: Scalability w.r.t. No. of Topologies: Cluster has 5 tenants. 20
tenants added every 2 hours until 8 hour mark. Green dotted line is average
job utility. Blue solid line is number of jobs on cluster. Vertical black lines
are reconfigurations.

Henge stabilizes better when there are more topologies and a
larger state space. With fewer topologies (first 2 hours) there is less
state space to maneuver in, and hence the average utility stays low.
20 new tenant topologies at t=2 hours drop average utility but also
open up the state space more–Henge quickly converges the cluster
to the max utility value. We observe the same behavior when more
jobs arrive at t=4, 6, and 8 hours.

Henge also tends to do fewer reconfigurations on older topologies
than on new ones–see our tech report [46].
Increasing Cluster Size: In Fig. 16, we run 40 topologies on clus-
ters of 10 to 40 machines (in our production use case studies, very
rarely did we see cluster sizes exceeding 40 nodes). Each machines
has 8-cores, 64 GB RAM, and a 10 Gbps interconnect. Topologies
(with SLO, max utility) are: 20 PageLoads (80 ms, 35), 8 Diamond
(juice=1.0, 5), 6 Star (1.0, 5), 6 Linear (1.0, 5).

As cluster size increases from an overloaded 10 nodes to 20 nodes,
time to converge drops by 50%, and plateaus. At 10 nodes, only 40%
of jobs meet SLO thresholds, and at the 5th percentile, jobs achieve
only 0.3% of their max utility. At 20, 30, and 40 nodes, 5th percentile
SLO satisfactions are 56.4%, 74.0% and 94.5% respectively. We

Fig. 16: Scalability w.r.t No. of Machines: 40 jobs run on cluster sizes
increasing from 10 to 40 nodes. The bars show number of reconfigurations
until convergence.

point the reader to our tech report for details [46]. Overall, Henge’s
performance generally improves with cluster size, and overheads
scale independently.

8.4.2 Failure Recovery.
Maximum Utility

Reconfigurations

Failure

Recovery
Reconfigurations

Fig. 17: Fault-tolerance: Failure at t=1020s & recovery at t=1380 s. Henge
makes no wrong decisions due to failure, and immediately converges to max
system utility after recovery.

Henge reacts gracefully to failures. In Fig. 17, we run 9 PageLoad
topologies each with 70 ms SLO and 35 max utility. We introduce a
failure at the worst possible time: during Henge’s reconfiguration op-
erations, at 1020 s. This severs communication between Henge and
all worker nodes; Henge’s Statistics module is unable to obtain fresh
job information. Henge reacts conservatively by avoiding reconfig-
uration in the absence of data. At 1380 s, when communication is
restored, Henge collects performance data for 5 minutes (until 1680
s) and then proceeds with reconfigurations until it meets all SLOs.

8.5 Memory Utilization

Reconfigurations

Fig. 18: Memory Utilization: 8 jobs with joins and 30 s tuple retention.

Fig. 18 shows a cluster with 8 memory-intensive micro-benchmark
topologies (latency SLO=100 ms, max utility=50). These topologies

259

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA F. Kalim et al.

contain joins where tuples are retained for 30 s, creating memory
pressure at some nodes. The figure shows that Henge reconfigures
quickly to reach total max utility of 400 by 2444s, keeping average
memory usage below 36%. Critically, the memory utilization (blue
dotted line) plateaus in the converged state, showing that Henge
handles memory-bound topologies gracefully.

9 RELATED WORK
Stream Processing: Among classical stream processing systems,
Aurora [17] performs OS-level scheduling of threads and drops tu-
ples in order to provide QoS for multiple queries [25]. However,
Aurora’s techniques do not apply or extend to a cluster environment.
Borealis [18] is a distributed stream processing system that supports
QoS, but is not multi-tenant. It orchestrates inflowing data, and opti-
mizes coverage to reduce tuple-shedding. Borealis, as implemented,
does not tackle the hard problems associated with multi-tenancy.

Modern stream processing systems [1–4, 11, 19, 54, 60] do not na-
tively handle adaptive elasticity. Ongoing work [8] on Spark Stream-
ing [88] allows scaling but does not apply to resource-limited multi-
tenant clusters. [26, 68] scale out stateful operators and checkpoint,
but do not scale in or support multi-tenancy.

Resource-aware elasticity in stream processing [23, 27, 34, 47,
50, 66, 71] assumes infinite resources that a tenant can scale out
to. [21, 36, 43, 55, 56, 72, 84] propose resource provisioning but
not multi-tenancy. Some works have focused on balancing load [62,
63, 75], optimal operator placement [38, 49, 67] and scaling out
strategies [39, 40] in stream processing. These approaches can be
used to complement Henge. [38–40] look at single-job elasticity, but
not multi-tenancy.

Themis [48] and others [76, 91] reduce load in stream processing
systems by dropping tuples. Henge does not drop tuples. Themis
uses the SIC metric to evaluate how much each tuple contributes in
terms of accuracy to the result. Henge’s juice metric is different in
that it is used to calculate processing rate and it serves as an input
rate-independent throughput metric.

Dhalion [33] supports throughput SLOs for Heron, but does not
generalize to varying input rates. It uses backpressure as a trigger for
scaling out topologies, but as backpressure takes time to propagate
(e.g., after spikes), it is less responsive than CPU load (which Henge
uses).
Multi-tenant Resource Management Systems: Resource sched-
ulers like YARN [80] and Mesos [41] can be run under stream
processing systems, and manually tuned [28]. As job internals are
not exposed to the scheduler, it is hard to make fine-grained decisions
for stream processing jobs in an automated fashion.
Cluster Scheduling: Some scheduling work addresses resource fair-
ness and SLO achievement [31, 32, 37, 58, 69, 73]. VM-based scal-
ing approaches [51] do not map directly and efficiently to expressive
frameworks like stream processing systems. Among multi-tenant
stream processing systems, Chronostream [85] achieves elasticity
through migration across nodes. It does not support SLOs.
SLAs/SLOs in Other Areas: SLAs/SLOs have been explored in
other areas. Pileus [78] is a geo-distributed storage system that
supports multi-level SLA requirements dealing with latency and
consistency. Tuba [22] builds on Pileus and uses reconfiguration to
adapt to changing workloads. SPANStore [86] is a geo-replicated

storage service that automates trading off cost vs. latency, while
being consistent and fault-tolerant. E-store [74] re-distributes hot
and cold data chunks across cluster nodes if load exceeds a threshold.
Cake [81] supports latency and throughput SLOs in multi-tenant
storage settings.

10 CONCLUSION
We presented Henge, a system for intent-driven, SLO-based multi-
tenant stream processing. Henge provides SLO satisfaction for jobs
with latency and/or throughput SLOs. To make throughput SLOs
independent of input rate and topology structure, Henge uses a new
metric called juice. When jobs miss their SLO, Henge uses three
kinds of actions (reconfiguration, reversion or reduction) to improve
the total utility achieved cluster-wide. Evaluation with Yahoo! topolo-
gies and Twitter datasets showed that in multi-tenant settings with
a mix of SLOs, Henge: i) converges quickly to max system utility
when resources suffice; ii) converges quickly to a high system utility
on a constrained cluster; iii) gracefully handles dynamic workloads;
iv) scales with increasing cluster size and jobs; and v) recovers from
failures.

ACKNOWLEDGEMENTS
This work was supported in part by: NSF CNS 1409416, NSF CNS
1319527, AFOSR/AFRL FA8750-11-2-0084, and a generous gift
from Microsoft. We would like to thank Robert Evans from the
Yahoo! Storm team for workload traces and his invaluable feed-
back. We thank Boyang Jerry Peng and Reza Farivar for feedback
and discussions on initial versions of our system. We also thank
Umar Kalim, Mainak Ghosh and Sangeetha Abdu Jyothi for their
invaluable input. We thank University of Utah for Emulab support.

REFERENCES
[1] Apache Flink. http://flink.apache.org/. Last Visited: Thursday 6th September,

2018.
[2] Apache Flume. https://flume.apache.org/. Last Visited: Thursday 6th September,

2018.
[3] Apache Samza. http://samza.apache.org/. Last Visited: 03/2016.
[4] Apache Storm. http://storm.apache.org/. Last Visited: Thursday 6th September,

2018.
[5] Apache Zookeeper. http://zookeeper.apache.org/. Last Visited: Thursday 6th

September, 2018.
[6] Based on Private Conversations with Yahoo! Storm Team.
[7] CPU Load. http://www.linuxjournal.com/article/9001. Last Visited: Thursday 6th

September, 2018.
[8] Elasticity in Spark Core. http://www.ibmbigdatahub.com/blog/

explore-true-elasticity-spark/. Last Visited: Thursday 6th September, 2018.
[9] EPA-HTTP Trace. http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html. Last Visited:

Thursday 6th September, 2018.
[10] How to collect and analyze data from 100,000 weather

stations. https://www.cio.com/article/2936592/big-data/
how-to-collect-and-analyze-data-from-100000-weather-stations.html. Last
Visited: Thursday 6th September, 2018.

[11] S4. http://incubator.apache.org/s4/. Last Visited: 03/2016.
[12] SDSC-HTTP Trace. http://ita.ee.lbl.gov/html/contrib/SDSC-HTTP.html. Last

Visited: Thursday 6th September, 2018.
[13] SLOs. https://en.wikipedia.org/wiki/Service_level_objective. Last Visited: Thurs-

day 6th September, 2018.
[14] Storm 0.8.2 Release Notes. http://storm.apache.org/2013/01/11/storm082-released.

html/. Last Visited: Thursday 6th September, 2018.
[15] Storm Applications. http://storm.apache.org/Powered-By.html. Last Visited:

Thursday 6th September, 2018.
[16] Uber Releases Hourly Ride Numbers In New York City

To Fight De Blasio. https://techcrunch.com/2015/07/22/

260

http://flink.apache.org/
https://flume.apache.org/
http://samza.apache.org/
http://storm.apache.org/
http://zookeeper.apache.org/
http://www.linuxjournal.com/article/9001
http://www.ibmbigdatahub.com/blog/explore-true-elasticity-spark/
http://www.ibmbigdatahub.com/blog/explore-true-elasticity-spark/
http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html
 https://www.cio.com/article/2936592/big-data/how-to-collect-and-analyze-data-from-100000-weather-stations.html
 https://www.cio.com/article/2936592/big-data/how-to-collect-and-analyze-data-from-100000-weather-stations.html
http://incubator.apache.org/s4/
http://ita.ee.lbl.gov/html/contrib/SDSC-HTTP.html
https://en.wikipedia.org/wiki/Service_level_objective
http://storm.apache.org/2013/01/11/storm082-released.html/
http://storm.apache.org/2013/01/11/storm082-released.html/
http://storm.apache.org/Powered-By.html
https://techcrunch.com/2015/07/22/uber-releases-hourly-ride-numbers-in-new-york-city-to-fight-de-blasio/
https://techcrunch.com/2015/07/22/uber-releases-hourly-ride-numbers-in-new-york-city-to-fight-de-blasio/

Henge: Intent-driven Multi-Tenant Stream Processing SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

uber-releases-hourly-ride-numbers-in-new-york-city-to-fight-de-blasio/.
Last Visited: Thursday 6th September, 2018.

[17] ABADI, D., CARNEY, D., CETINTEMEL, U., CHERNIACK, M., CONVEY, C.,
ERWIN, C., GALVEZ, E., HATOUN, M., MASKEY, A., RASIN, A., ET AL.
Aurora: A Data Stream Management System. In Proceedings of the International
Conference on Management of Data (SIGMOD) (2003), ACM, pp. 666–666.

[18] ABADI, D. J., AHMAD, Y., BALAZINSKA, M., CETINTEMEL, U., CHERNIACK,
M., HWANG, J.-H., LINDNER, W., MASKEY, A., RASIN, A., RYVKINA, E.,
ET AL. The Design of the Borealis Stream Processing Engine. In Proceedings of
the Conference on Innovative Data Systems Research (2005), vol. 5, pp. 277–289.

[19] AKIDAU, T., BALIKOV, A., BEKIROĞLU, K., CHERNYAK, S., HABERMAN,
J., LAX, R., MCVEETY, S., MILLS, D., NORDSTROM, P., AND WHITTLE, S.
Millwheel: Fault-Tolerant Stream Processing at Internet Scale. In Proceedings of
the VLDB Endowment (2013), vol. 6, VLDB Endowment, pp. 1033–1044.

[20] AMIN, T. Apollo Social Sensing Toolkit. http://apollo3.cs.illinois.edu/datasets.
html, 2014. Last Visited: Thursday 6th September, 2018.

[21] ANIELLO, L., BALDONI, R., AND QUERZONI, L. Adaptive Online Scheduling
in Storm. In Proceedings of the 7th ACM International Conference on Distributed
Event-Based Systems (2013), ACM, pp. 207–218.

[22] ARDEKANI, M. S., AND TERRY, D. B. A Self-Configurable Geo-Replicated
Cloud Storage System. In Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI) (2014), pp. 367–381.

[23] BALKESEN, C., TATBUL, N., AND ÖZSU, M. T. Adaptive Input Admission
and Management for Parallel Stream Processing. In Proceedings of the 7th
ACM International Conference on Distributed Event-Based Systems (2013), ACM,
pp. 15–26.

[24] BILAL, M., AND CANINI, M. Towards Automatic Parameter Tuning of Stream
Processing Systems. In Proceedings of the Symposium on Cloud Computing
(2017), ACM, p. 1.

[25] CARNEY, D., ÇETINTEMEL, U., RASIN, A., ZDONIK, S., CHERNIACK, M.,
AND STONEBRAKER, M. Operator scheduling in a data stream manager. In
Proceedings 2003 VLDB Conference (2003), Elsevier, pp. 838–849.

[26] CASTRO FERNANDEZ, R., MIGLIAVACCA, M., KALYVIANAKI, E., AND PIET-
ZUCH, P. Integrating Scale-Out and Fault Tolerance in Stream Processing using
Operator State Management. In Proceedings of the International Conference on
Management of Data (SIGMOD) (2013), ACM, pp. 725–736.

[27] CERVINO, J., KALYVIANAKI, E., SALVACHUA, J., AND PIETZUCH, P. Adaptive
Provisioning of Stream Processing Systems in the Cloud. In Proceedings of the
28th International Conference on Data Engineering Workshops (2012), IEEE,
pp. 295–301.

[28] CLOUDERA. Tuning YARN — Cloudera. http://www.cloudera.com/
documentation/enterprise/5-2-x/topics/cdh_ig_yarn_tuning.html, 2016. Last Vis-
ited Thursday 6th September, 2018.

[29] CURINO, C., DIFALLAH, D. E., DOUGLAS, C., KRISHNAN, S., RAMAKRISH-
NAN, R., AND RAO, S. Reservation-Based Scheduling: If You’re Late Don’t
Blame Us! In Proceedings of the ACM Symposium on Cloud Computing (2014),
ACM, pp. 1–14.

[30] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN,
A., PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHALL, P., AND VOGELS, W.
Dynamo: Amazon’s Highly Available Key-Value Store. ACM SIGOPS Operating
Systems Review 41, 6 (2007), 205–220.

[31] DELIMITROU, C., AND KOZYRAKIS, C. Paragon: QoS-Aware Scheduling for
Heterogeneous Datacenters. In Proceedings of the 18th International Conference
on Architectural Support for Programming Languages and Operating Systems
(New York, NY, USA, 2013), ASPLOS ’13, ACM, pp. 77–88.

[32] DELIMITROU, C., AND KOZYRAKIS, C. Quasar: Resource-efficient and QoS-
aware Cluster Management. In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating Systems
(New York, NY, USA, 2014), ASPLOS ’14, ACM, pp. 127–144.

[33] FLORATOU, A., AGRAWAL, A., GRAHAM, B., RAO, S., AND RAMASAMY,
K. Dhalion: Self-Regulating Stream Processing in Heron. In Proceedings of the
VLDB Endowment (2017), ACM, p. 1.

[34] FU, T. Z., DING, J., MA, R. T., WINSLETT, M., YANG, Y., AND ZHANG, Z.
DRS: Dynamic Resource Scheduling for Real-Time Analytics over Fast Streams.
In Proceedings of the 35th International Conference on Distributed Computing
Systems (2015), IEEE, pp. 411–420.

[35] GEDIK, B., ANDRADE, H., WU, K.-L., YU, P. S., AND DOO, M. SPADE:
The System S Declarative Stream Processing Engine. In Proceedings of the
International Conference on Management of Data (SIGMOD) (2008), ACM,
pp. 1123–1134.

[36] GEDIK, B., SCHNEIDER, S., HIRZEL, M., AND WU, K.-L. Elastic Scaling for
Data Stream Processing. IEEE Transactions on Parallel and Distributed Systems
25, 6 (2014), 1447–1463.

[37] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A., SHENKER, S.,
AND STOICA, I. Dominant Resource Fairness: Fair Allocation of Multiple Re-
source Types. In Proceedings of the 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (2011), vol. 11, pp. 24–24.

[38] HEINZE, T., JERZAK, Z., HACKENBROICH, G., AND FETZER, C. Latency-
Aware Elastic Scaling for Distributed Data Stream Processing Systems. In Pro-
ceedings of the 8th ACM International Conference on Distributed Event-Based
Systems (2014), ACM, pp. 13–22.

[39] HEINZE, T., PAPPALARDO, V., JERZAK, Z., AND FETZER, C. Auto-Scaling
Techniques for Elastic Data Stream Processing. In Proceedings of the 30th
International Conference on Data Engineering Workshops (2014), IEEE, pp. 296–
302.

[40] HEINZE, T., ROEDIGER, L., MEISTER, A., JI, Y., JERZAK, Z., AND FETZER, C.
Online Parameter Optimization for Elastic Data Stream Processing. In Proceedings
of the 6th ACM Symposium on Cloud Computing (2015), ACM, pp. 276–287.

[41] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A., JOSEPH, A. D.,
KATZ, R. H., SHENKER, S., AND STOICA, I. Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center. In Proceedings of the 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI) (2011),
vol. 11, pp. 22–22.

[42] JACOBSON, V. Congestion Avoidance and Control. In Proceedings of the ACM
SIGCOMM Computer Communication Review (1988), vol. 18, ACM, pp. 314–329.

[43] JAIN, N., AMINI, L., ANDRADE, H., KING, R., PARK, Y., SELO, P., AND
VENKATRAMANI, C. Design, Implementation, and Evaluation of the Linear Road
Benchmark on the Stream Processing Core. In Proceedings of the International
Conference on Management of Data (SIGMOD) (2006), ACM, pp. 431–442.

[44] JONES, C., WILKES, J., MURPHY, N., AND SMITH, C. Service Level Objectives.
https://landing.google.com/sre/book/chapters/service-level-objectives.html. Last
Visited: Thursday 6th September, 2018.

[45] JYOTHI, S. A., CURINO, C., MENACHE, I., NARAYANAMURTHY, S. M., TU-
MANOV, A., YANIV, J., GOIRI, Í., KRISHNAN, S., KULKARNI, J., AND RAO, S.
Morpheus: Towards Automated SLOs for Enterprise Clusters. In Proceedings of
the 12th USENIX Symposium on Operating Systems Design and Implementation
(2016), p. 117.

[46] KALIM, F., XU, L., BATHEY, S., MEHERWAL, R., AND GUPTA, I. Henge:
Intent-driven Multi-Tenant Stream Processing. https://arxiv.org/abs/1802.00082.
Last Visited: Thursday 6th September, 2018.

[47] KALYVIANAKI, E., CHARALAMBOUS, T., FISCATO, M., AND PIETZUCH, P.
Overload Management in Data Stream Processing Systems with Latency Guar-
antees. In Proceedings of the 7th IEEE International Workshop on Feedback
Computing (Feedback Computing) (2012).

[48] KALYVIANAKI, E., FISCATO, M., SALONIDIS, T., AND PIETZUCH, P. Themis:
Fairness in Federated Stream Processing under Overload. In Proceedings of the
2016 International Conference on Management of Data (2016), ACM, pp. 541–
553.

[49] KALYVIANAKI, E., WIESEMANN, W., VU, Q. H., KUHN, D., AND PIETZUCH,
P. SQPR: Stream Query Planning with Reuse. In Proceedings of the 27th
International Conference on Data Engineering (April 2011), pp. 840–851.

[50] KLEIMINGER, W., KALYVIANAKI, E., AND PIETZUCH, P. Balancing Load
in Stream Processing with the Cloud. In Proceedings of the 27th International
Conference on Data Engineering Workshops (2011), IEEE, pp. 16–21.

[51] KNAUTH, T., AND FETZER, C. Scaling Non-Elastic Applications Using Vir-
tual Machines. In Proceedings of the IEEE International Conference on Cloud
Computing, (July 2011), pp. 468–475.

[52] KOPETZ, H. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Springer, 2011.

[53] KREPS, J., NARKHEDE, N., RAO, J., ET AL. Kafka: A Distributed Messaging
System for Log Processing. In Proceedings of the NetDB (2011), pp. 1–7.

[54] KULKARNI, S., BHAGAT, N., FU, M., KEDIGEHALLI, V., KELLOGG, C., MIT-
TAL, S., PATEL, J. M., RAMASAMY, K., AND TANEJA, S. Twitter Heron:
Stream Processing at Scale. In Proceedings of the International Conference on
Management of Data (SIGMOD) (2015), ACM, pp. 239–250.

[55] LI, B., DIAO, Y., AND SHENOY, P. Supporting Scalable Analytics with Latency
Constraints. In Proceedings of the VLDB Endowment (2015), vol. 8, VLDB
Endowment, pp. 1166–1177.

[56] LOESING, S., HENTSCHEL, M., KRASKA, T., AND KOSSMANN, D. Stormy:
An Elastic and Highly Available Streaming Service in the Cloud. In Proceedings
of the Joint EDBT/ICDT Workshops (2012), ACM, pp. 55–60.

[57] LOW, S. H., AND LAPSLEY, D. E. Optimization Flow Control. I. Basic Algorithm
and Convergence. IEEE/ACM Transactions on networking 7, 6 (1999), 861–874.

[58] MACE, J., BODIK, P., FONSECA, R., AND MUSUVATHI, M. Retro: Targeted
Resource Management in Multi-Tenant Distributed Systems. In Proceedings of
the 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI) (2015), pp. 589–603.

[59] MARKETS AND MARKETS. Streaming analytics market worth 13.70 Bil-
lion USD by 2021. https://www.marketsandmarkets.com/Market-Reports/
streaming-analytics-market-64196229.html. Last Visited: Thursday 6th Sep-
tember, 2018.

[60] MURRAY, D. G., MCSHERRY, F., ISAACS, R., ISARD, M., BARHAM, P., AND
ABADI, M. Naiad: A Timely Dataflow System. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (New York, NY, USA, 2013), SOSP

261

https://techcrunch.com/2015/07/22/uber-releases-hourly-ride-numbers-in-new-york-city-to-fight-de-blasio/
http://apollo3.cs.illinois.edu/datasets.html
http://apollo3.cs.illinois.edu/datasets.html
http://www.cloudera.com/documentation/enterprise/5-2-x/topics/cdh_ig_yarn_tuning.html
http://www.cloudera.com/documentation/enterprise/5-2-x/topics/cdh_ig_yarn_tuning.html
https://landing.google.com/sre/book/chapters/service-level-objectives.html
https://arxiv.org/abs/1802.00082
https://www.marketsandmarkets.com/Market-Reports/streaming-analytics-market-64196229.html
https://www.marketsandmarkets.com/Market-Reports/streaming-analytics-market-64196229.html

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA F. Kalim et al.

’13, ACM, pp. 439–455.
[61] NAAMAN, M., ZHANG, A. X., BRODY, S., AND LOTAN, G. On the Study of

Diurnal Urban Routines on Twitter. In Proceedings of the 6th International AAAI
Conference on Weblogs and Social Media (2012).

[62] NASIR, M. A. U., MORALES, G. D. F., GARCÃ A-SORIANO, D., KOURTELLIS,
N., AND SERAFINI, M. The Power of Both Choices: Practical Load Balancing for
Distributed Stream Processing Engines. In Proceedings of the 31st International
Conference on Data Engineering (ICDE) (April 2015), pp. 137–148.

[63] NASIR, M. A. U., MORALES, G. D. F., KOURTELLIS, N., AND SERAFINI,
M. When Two Choices are Not Enough: Balancing at Scale in Distributed
Stream Processing. In Proceedings of the 32nd International Conference on Data
Engineering (ICDE) (May 2016), IEEE, pp. 589–600.

[64] NOGHABI, S. A., PARAMASIVAM, K., PAN, Y., RAMESH, N., BRINGHURST, J.,
GUPTA, I., AND CAMPBELL, R. H. Samza: Stateful scalable stream processing
at linkedin. Proceedings of the VLDB Endowment 10, 12 (2017), 1634–1645.

[65] OUSTERHOUT, KAY AND CANEL, CHRISTOPHER AND RATNASAMY, SYLVIA
AND SHENKER, SCOTT. Monotasks: Architecting for Performance Clarity in
Data Analytics Frameworks. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP) (2017).

[66] PENG, B., HOSSEINI, M., HONG, Z., FARIVAR, R., AND CAMPBELL, R. R-
Storm: Resource-Aware Scheduling in Storm. In Proceedings of the 16th Annual
Middleware Conference (2015), ACM, pp. 149–161.

[67] PIETZUCH, P., LEDLIE, J., SHNEIDMAN, J., ROUSSOPOULOS, M., WELSH, M.,
AND SELTZER, M. Network-Aware Operator Placement for Stream-Processing
Systems. In Proceedings of the 22nd International Conference on Data Engineer-
ing (ICDE’06) (April 2006), pp. 49–49.

[68] QIAN, Z., HE, Y., SU, C., WU, Z., ZHU, H., ZHANG, T., ZHOU, L., YU, Y.,
AND ZHANG, Z. TimeStream: Reliable Stream Computation in the Cloud. In
Proceedings of the 8th ACM European Conference on Computer Systems (New
York, NY, USA, 2013), EuroSys ’13, ACM, pp. 1–14.

[69] RAMESHAN, N., LIU, Y., NAVARRO, L., AND VLASSOV, V. Hubbub-Scale:
Towards Reliable Elastic Scaling under Multi-Tenancy. In Proceedings of the
16th International Symposium on Cluster, Cloud and Grid Computing (CCGrid)
(2016), IEEE, pp. 233–244.

[70] RAVINDRAN, B., JENSEN, E. D., AND LI, P. On Recent Advances in Time/Utility
Function Real-Time Scheduling and Resource Management. In Object-Oriented
Real-Time Distributed Computing, 2005. ISORC 2005. Eighth IEEE International
Symposium on (2005), IEEE, pp. 55–60.

[71] SATZGER, B., HUMMER, W., LEITNER, P., AND DUSTDAR, S. Esc: Towards
An Elastic Stream Computing Platform for the Cloud. In Proceedings of the 4th
International Conference on Cloud Computing (2011), IEEE, pp. 348–355.

[72] SCHNEIDER, S., ANDRADE, H., GEDIK, B., BIEM, A., AND WU, K.-L. Elastic
Scaling of Data Parallel Operators in Stream Processing. In Proceedings of
International Parallel and Distributed Processing Symposium (2009), IEEE, pp. 1–
12.

[73] SHUE, D., FREEDMAN, M. J., AND SHAIKH, A. Performance Isolation and
Fairness for Multi-Tenant Cloud Storage. In Proceedings of the 10th Symposium
on Operating Systems Design and Implementation (2012), vol. 12, pp. 349–362.

[74] TAFT, R., MANSOUR, E., SERAFINI, M., DUGGAN, J., ELMORE, A. J., ABOUL-
NAGA, A., PAVLO, A., AND STONEBRAKER, M. E-Store: Fine-Grained Elastic
Partitioning for Distributed Transaction Processing Systems. In Proceedings of
the VLDB Endowment (Nov. 2014), vol. 8, VLDB Endowment, pp. 245–256.

[75] TATBUL, N., AHMAD, Y., ÇETINTEMEL, U., HWANG, J.-H., XING, Y., AND
ZDONIK, S. Load Management and High Availability in the Borealis Distributed
Stream Processing Engine. GeoSensor Networks (2006), 66–85.

[76] TATBUL, N., ÇETINTEMEL, U., AND ZDONIK, S. Staying Fit: Efficient Load
Shedding Techniques for Distributed Stream Processing. In Proceedings of the
33rd international conference on Very large data bases (2007), VLDB Endowment,

pp. 159–170.
[77] TEAM, Y. S. Benchmarking Streaming Computation En-

gines at Yahoo! https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at, 2015. Last Visited:
Thursday 6th September, 2018.

[78] TERRY, D. B., PRABHAKARAN, V., KOTLA, R., BALAKRISHNAN, M., AGUIL-
ERA, M. K., AND ABU-LIBDEH, H. Consistency-Based Service Level Agree-
ments for Cloud Storage. In Proceedings of the 24th ACM Symposium on Operat-
ing Systems Principles (2013), ACM, pp. 309–324.

[79] TOSHNIWAL, A., TANEJA, S., SHUKLA, A., RAMASAMY, K., PATEL, J. M.,
KULKARNI, S., JACKSON, J., GADE, K., FU, M., DONHAM, J., ET AL. Storm
@ Twitter. In Proceedings of the International Conference on Management of
Data (SIGMOD) (2014), ACM, pp. 147–156.

[80] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGARWAL, S., KONAR,
M., EVANS, R., GRAVES, T., LOWE, J., SHAH, H., SETH, S., ET AL. Apache
Hadoop YARN: Yet Another Resource Negotiator. In Proceedings of the 4th
Annual Symposium on Cloud Computing (2013), ACM, p. 5.

[81] WANG, A., VENKATARAMAN, S., ALSPAUGH, S., KATZ, R., AND STOICA, I.
Cake: Enabling High-level SLOs on Shared Storage Systems. In Proceedings of
the 3rd ACM Symposium on Cloud Computing (2012), ACM, p. 14.

[82] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GURUPRASAD, S., NEW-
BOLD, M., HIBLER, M., BARB, C., AND JOGLEKAR, A. An Integrated Experi-
mental Environment for Distributed Systems and Networks. In Proceedings of the
5th Symposium on Operating Systems Design and Implementation (Boston, MA,
Dec. 2002), USENIX Association, pp. 255–270.

[83] WIKIPEDIA. Pareto Efficiency — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Pareto_efficiency&oldid=741104719, 2016.
Last Visited Thursday 6th September, 2018.

[84] WU, K.-L., HILDRUM, K. W., FAN, W., YU, P. S., AGGARWAL, C. C.,
GEORGE, D. A., GEDIK, B., BOUILLET, E., GU, X., LUO, G., ET AL. Chal-
lenges and Experience in Prototyping a Multi-Modal Stream Analytic and Monitor-
ing Application on System S. In Proceedings of the 33rd International Conference
on Very Large Data Bases (2007), VLDB Endowment, pp. 1185–1196.

[85] WU, Y., AND TAN, K.-L. Chronostream: Elastic Stateful Stream Computation
in the Cloud. In Proceedings of the 31st International Conference on Data
Engineering (2015), IEEE, pp. 723–734.

[86] WU, Z., BUTKIEWICZ, M., PERKINS, D., KATZ-BASSETT, E., AND MAD-
HYASTHA, H. V. Spanstore: Cost-effective Geo-replicated Storage Spanning
Multiple Cloud Services. In Proceedings of the 24th ACM Symposium on Operat-
ing Systems Principles (2013), ACM, pp. 292–308.

[87] XU, L., PENG, B., AND GUPTA, I. Stela: Enabling Stream Processing Systems to
Scale-in and Scale-out On-demand. In IEEE International Conference on Cloud
Engineering (IC2E) (2016), IEEE, pp. 22–31.

[88] ZAHARIA, M., DAS, T., LI, H., HUNTER, T., SHENKER, S., AND STOICA,
I. Discretized Streams: Fault-Tolerant Streaming Computation at Scale. In
Proceedings of the 24th ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2013), SOSP ’13, ACM, pp. 423–438.

[89] ZHANG, H., ANANTHANARAYANAN, G., BODIK, P., PHILIPOSE, M., BAHL,
P., AND FREEDMAN, M. J. Live video analytics at scale with approximation and
delay-tolerance. In NSDI (2017), vol. 9, p. 1.

[90] ZHANG, H., STAFMAN, L., OR, A., AND FREEDMAN, M. J. Slaq: quality-
driven scheduling for distributed machine learning. In Proceedings of the 2017
Symposium on Cloud Computing (2017), ACM, pp. 390–404.

[91] ZHAO, H. C., XIA, C. H., LIU, Z., AND TOWSLEY, D. A Unified Modeling
Framework for Distributed Resource Allocation of General Fork and Join Process-
ing Networks. In ACM SIGMETRICS Performance Evaluation Review (2010),
vol. 38, ACM, pp. 299–310.

262

https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://en.wikipedia.org/w/index.php?title=Pareto_efficiency&oldid=741104719
https://en.wikipedia.org/w/index.php?title=Pareto_efficiency&oldid=741104719

	Abstract
	1 Introduction
	2 Henge Summary
	3 Background
	4 SLOs and Utility Functions
	5 Henge State Machine
	5.1 Reconfiguration
	5.2 Reduction
	5.3 Reversion
	5.4 Proof of Convergence
	5.5 Discussion

	6 Juice: Definition and Algorithm
	7 Implementation
	8 Evaluation
	8.1 Henge Policy and Scheduling
	8.2 Production Workloads
	8.3 Stateful Topologies
	8.4 Scalability and Fault-tolerance
	8.5 Memory Utilization

	9 Related Work
	10 Conclusion
	References

