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Abstract
Wafer-scale GPU technology has recently been proposed to improve
the scalability of multi-GPU systems. By expanding a multi-chiplet
module GPU design to the scale of the whole wafer, GPU chiplets
can communicate much faster than using off-chip networks. Yet,
while the technology is mature in the Electrical Engineering do-
main, architecture- and system-level research is limited, impeding
the deployment of wafer-scale GPUs. In this paper, we perform a
series of simulator-based design explorations using three experi-
ments that cover hardware organization, system-level scheduling,
and software adaptation. In the hardware organization experiment,
we explore how the GPU chiplet size impacts the performance
while keeping the wafer size unchanged. The system-level sched-
uling experiment explores how the performance changes if we
change the number of chiplets used, revealing the scalability lim-
itation of current GPU kernels running on wafer-scale GPUs. In
the software adaptation experiment, we explore the possibilities
of forming pipelines on a wafer to improve performance. Overall,
we find that wafer-scale GPUs demonstrate unique properties, and
the performance improvement of wafer-scale GPUs cannot rely
on solutions established for traditional multi-GPU systems and
MCM-GPU devices.

CCS Concepts
• Computer systems organization→ Parallel architectures;
Multicore architectures; Single instruction, multiple data;
Interconnection architectures.
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1 Introduction
The ever-increasing complexity of modern workloads demands
higher and higher GPU computing capability [12] [9] [5] [2]. Due
to the physical limitations, the die size and total number of transis-
tors in a single GPU cannot increase indefinitely. The multi-chip-
module (MCM) allows GPUs to equip more computing resources
beyond the size limitation of a single die, providing higher perfor-
mance [1, 7] [4]. While each chip is not getting more powerful,
chips within one package are connected with an in-package net-
work, which is faster than off-chip interconnects (e.g., PCIe). In
theory, we get better scalability if we can connect more computing
resources with faster networks. The limit is to utilize the whole
wafer, forming wafer-scale GPUs.

Recent research and implementation demonstrated two different
wafer-scale chip designing paradigms. The small tile wafer-scale
GPU is designed to satisfy the commercialization and the require-
ment of yield, which has been implemented in Cerebras products [6].
Engineers designed a thousand small and simple computational
structures and connected them with a huge mesh network. Con-
versely, the larger tile with fully functional processors simulated in
the university’s lab shows their powers [8], researchers at UIUC
interposed conservative GPUs in a wafer and connected them to-
gether.

Researchers in UIUC describe a prototyped wafer-scale GPUs
with advanced technologies in the paper [8]: 1) Silicon Interconnect
Fabric (Si-IF) on a passive interconnect silicon substrate, allowing
the links to provide high density, high bandwidth, low latency, and
low energy communication. 2) Copper pillar-based I/O pins, ex-
posed on the surface of the silicon substrate, serving as the physical
chip-network interface. 3) Serially connected GPUs, allowing multi-
ple tiles to share a power management circuit [13]. 4) Package-free
circuits, allowing GPM, HBM, and memory management circuits to
be directly placed on the silicon substrate. The prototyped wafer-
scale GPU, alongside commercialized wafer-scale processors [11]
demonstrates that the networking, packaging, and cooling solutions
are no longer barriers to implementing wafer-scale GPUs.

While the technology barriers are resolved, architectural re-
search of wafer-scale GPU is still in its infancy. Existing research
dealt with wafer-scale GPUs as a special case of multi-chip-module
GPUs [8], several graphic processing models (GPM) are placed on
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Figure 1: The structure of a wafer-scale GPU. From left to
right: the GPM architecture, tile architecture, multiple tiles
share a peripheral circuit, and the overview of the wafer-
scale GPU.

a wafer-scale mesh network. neglecting the uniqueness of wafer-
scale GPUs. For example, the wafer-scale GPUs are likely too large
to be utilized by a single kernel. An under-explored problem is the
proper zoning and pipelining in wafer-scale GPUs so that the GPU
can run multiple kernels simultaneously. Addressing challenges
like zoning and pipelining is required before users can harness the
power of wafer-scale GPUs.

Designing solutions for wafer-scale GPUs requires systematic
research. Rather than providing an ultimate design, this paper in-
spires future research directions at the architecture level related to
wafer-scale GPUs. This paper aims to perform preliminary experi-
ments that demonstrate the unique challenges of wafer-scale GPU
system design. Specifically, we consider three research directions
that may need to be addressed, including 1) hardware organization,
2) system-level scheduling, and 3) software-level adaptation.

We consider wafer-scale GPUs as an array of identical GPU tiles
(consisting of GPMs and HBMs) arranged in a grid-like pattern
(see Figure 1). In this paper, we explore unique problems related to
wafer-scale GPUs from three aspects, including 1) hardware organi-
zation, 2) system-level scheduling, and 3) software-level adaptation.

1) Hardware organization. Hardware organization design
needs to decide the tile sizes. Considering the yield, smaller tiles are
cost-efficient. However, small tiles increase the overhead of periph-
eral circuits (e.g., DeCap, power management circuits) and commu-
nication latency. Therefore, we perform a study that explores how
the tile size impacts the overall performance. Our results inform
design decisions that balance performance and manufacture cost.

2) System-level scheduling. MCM-GPUs are typically mar-
keted as single GPU units. However, as system scales grow, modern
workloads become less likely to fully utilize an entire wafer. It’s of-
ten unnecessary to use all tiles for a single task. We must determine
the optimal tile count for each workload.

3) Software-level adaptation. New hardware needs software
support. A single kernel often fails to fully utilize an entire wafer.
Current GPU programming frameworks, which execute kernels
sequentially, do not provide the necessary APIs for users to de-
fine spatial partitions and layouts. We believe that the choice of
partitioning scheme is critical for optimizing system performance.

The contribution of this paper includes:
• Set of exploratory experiments on wafer-scale GPUs, high-
lighting how wafer-scale GPUs differ from MCM-GPUs.

• Discussion of potential future research directions on wafer-
scale GPU.

Table 1: Size of different Components

Benchmark CTA count

Finite Impulse Response (FIR) 65536
Fast Fourier Transform (FFT) 262144
Matrix transpose (MT) 65536
Image to Column (I2C) 516128
PageRank (PR) 262144
ReLU 65536
Sparse matrix-vector multiplication (SPMV) 65536
Simple convolution (SC) 65665
Stencil 2D (S2D) 65408

2 Methodology
We design three experiments that explore wafer-scale GPU design
decisions at hardware, system, and software levels.

Simulator. We developed Akkalat, a modified version of MG-
PUSim [10] tailored for wafer-scale GPU evaluation. Major addi-
tions to MGPUSim in Akkalat include a mesh network and con-
figurations for wafer-scale GPUs. We change tile configurations,
including CU counts, L2 Cache size, memory size, the number of
tiles, and the bandwidth in the mesh network to model different
wafer-scale GPUs.

Workloads. We evaluate wafer-scale GPU with a wide range of
benchmarks supported by MGPUSim. The benchmark input sizes
shown in Table 1 are large enough to utilize all the compute units
within all tiles and fixed in all experiments (strong scaling) in this
paper.

Configuration. We configure the wafer-scale GPU as mesh
network-connected tiles, with each tile equipping a certain number
of CUs and a certain amount of memory. We designate the center
tile as the CPU, which is responsible for dispatching kernels and
providing page-fault handling services.

All instructions are pre-filled into the instruction cache in each
tile, kernels and memory are evenly distributed to the selected
tiles. For memory, the pages are also evenly distributed to all the
tiles (aligned to page boundaries). For kernels, the thread blocks (a
thread block is a group of threads typically between 64 and 512)
are also evenly distributed to all the tiles.

2.1 Performance vs. Tiles Size
In the first experiment, we explore the relationship between tile
size and performance, considering wafers with diameters of 215𝑚𝑚

and area of 46, 255𝑚𝑚2. Keeping the wafer-size unchanged, we
alter the die size of each tile and the total number of tiles. A tile
comprises two parts: Graphics Processing Module (GPM) and High
Bandwidth Memory (HBM). To save space for placing more tiles,
multiple tiles shares peripheral circuits (i.e., voltage regulator mod-
ule (VRM), decoupling capacitors (DeCap), and 𝑉 𝑖𝑛𝑡 regulator [8])).
The number of tiles connected to a single VRM depends on the
voltage supply from the peripheral circuits. We assume the voltage
for a tile corresponds to its Compute Unit (CU, a CU is a GPU core)
count, and the number of tiles connected with a periphery circuit
is scaled up or down based on the CU count of a tile. We estimate
the die size of each component of a tile and the memory controllers
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Table 2: Size of different Components

Component Size (𝑚𝑚2) Component Size (𝑚𝑚2)

CU + L1$ 3.12 HBM (8GB) 92.00
L2$/MB 4.34 VRM & DeCap 1, 380
HBM Control 14.90 𝑉 𝑖𝑛𝑡 Regulator 200

Table 3: Tile configuration and number

CU/GPM L2/GPM HBM bandwidth GPM/Wafer

256 16MB 64GB, 8 ctrler 6TB/s 14
128 8MB 32GB, 4 ctrler 3TB/s 27
64 4MB 16GB, 4 ctrler 1.5TB/s 48
32 2MB 8GB, 2 ctrler 768GB/s 80
16 1MB 4GB, 1 ctrler 384GB/s 121
8 512KB 2GB, 1 ctrler 192GB/s 158
4 256KB 1GB, 1 ctrler 96GB/s 182

from the die shot of an AMD MI100 GPU [7], and estimate the
size of the peripheral power supply circuits according to previous
on-die implementations of wafer-scale GPUs [8]. The die size of
each component is detailed in Table 2.

We generate 7 different configurations (see Table 3), ranging
from 4 CUs per tile to 256 CUs per tile. We also scale the L2 cache
size, HBM memory size, and network bandwidth in proportion to
the computing power of each tile. We arrange the tiles on a wafer
to be as close to a rectangle as possible.

This experiment is unique to wafer-scale GPUs as the hop count
is not a major concern in MCM GPUs. When each tile has 64 CUs,
the maximum count can be 13 (7 × 7 tile), creating a major perfor-
mance and scalability issue.

2.2 Running GPU Kernels with Part of the
Wafer

In the first experiment, each kernel is executed by all the tiles
on the wafer. However, given that the GPU programs were not
written for wafer-scale GPUs, scalability issues may arise. While
utilizing more tiles provides additional computational resources, it
also may increase communication overhead due to long-distance,
cross-wafer communication. Reducing the number of tiles allocated
for the kernel may not harm performance but can potentially spare
resources for another workload, improving overall utilization.

Aligning with prior work[8], we use 64-CU tiles in the following
experiments. We assume the whole wafer-scale GPU contains a
7 × 7 mesh network. When scheduling tasks to part of the wafer,
we organize tiles to form a square, which can reduce the maximum
communication distance. We evaluate 1×1, 2×2, 3×3, 4×4, 5×5, 6×6,
and 7×7 configurations. We always use the tiles from the top-left
corner, so when the size is greater or equal to 4×4, and one tile is
the CPU.

This experiment is unique to wafer-scale GPUs because scalabil-
ity is a more serious problem than resource-limited single GPUs.
Moreover, the size of the tile groups assigned to execute a kernel can

›

Im2Col

MT1

GEMM

MT2

IDLE

CF1 CF2

CF3 CF4

Figure 2: Various pipelining configurations for wafer-scale
GPUs. “CF” stands for “configuration”.

make a performance difference as the size impacts communication
distances.

2.3 Pipelining Kernels on a Wafer-Scale GPU
The second experiment suggests utilizing too many tiles may not
yield the best performance (see Figure 4). Following this insight, we
partition the wafer-scale GPU into several sub-GPUs and pipeline
tasks on each sub-GPU. In this experiment, we select 2D convolu-
tion, a key part of convolutional neuron network workloads. The
2D convolution implementation contains four kernels, including
image-to-column conversion (Im2Col), matrix transpose(MT1), gen-
eral matrix multiplication (GEMM), and another matrix transpose
(MT2).

In this experiment, we still use the 7× 7 wafer-scale GPU config-
uration. Since there are four kernels in 2D convolution, the wafer-
scale GPU is partitioned into four sub-GPUs. We try four different
partition configurations (see Figure 2). We define the four config-
urations as follows: CF1) evenly split the wafer, CF2) use the best
performing sub-GPU size for IM2Col and MT according to experi-
ment 2 and use the rest for GEMM, CF3) minimize communication
distance with a cost of not utilizing some tiles, and CF4) minimize
the matrix transform execution time (we intentionally add this
design to demonstrate how low the performance can be in a bad
pipeline design). We also divide the input data into four sub-batches
to form a pipeline.

This experiment is unique to wafer-scale GPUs because scalabil-
ity is a more serious problem than resource-limited single GPUs.
Moreover, the size of the tile groups assigned to execute a kernel can
make a performance difference as the size impacts communication
distances.

While pipelining is not unique to wafer-scale GPU systems, as-
signing the tiles to the stages is not present in MCM-GPUs or
regular multi-GPU systems. The assigning should balance the com-
putation requirement, intra-kernel communication distance, and
inter-kernel communication distance to achieve the best perfor-
mance and utilization.

3 Results
Next, we show the results of the proposed experiments.
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Figure 3: Simulation results for different tile size configura-
tions (normalized by 64CU/tile configuration).

Performance vs. tile size. In the first experiment, we examine
how the tile size impacts performance. Note that since we keep
the total wafer size the same, wafers with smaller tiles have lower
overall computing capability due to the overhead of peripheral
circuits.

Our results (see Figure 3) suggest that the performance generally
improves as the tile size increases. We use harmonic means [3] to
compare the overall performance improvement between different
configurations. The improved performance is because of the higher
computing power, higher GPU-GPU bandwidth and fewer hops
required to route data movements. However, we also observe that
some benchmarks (e.g., I2C, ReLU, and SPMV) are not sensitive
to tile sizes. This is because they do not require much inter-GPU
communication and are constrained by local memory bandwidth.

Additionally, we find that, in many benchmarks (e.g., FIR, FFT,
I2C, PR, ReLU, and SC), the performance stops increases when the
tile size is greater than 64. In FFT and PR, the 256-CU-per-tile wafer
is even slower than the 128-CU-per-tile wafer. This is because the
overall available resources are similar in 64-, 128-, and 256-CU-per-
tile wafers. Only the MT and S2D benchmarks always benefit from
larger tiles because these two benchmarks involve massive data
movement, and fewer hops result in smaller queueing latency at
switches. Considering larger tiles are much more expensive to man-
ufacture, we consider 64-CU-per-tile wafer strikes a good balance
between manufacturing cost and performance, and hence, we use
64-CU-per-tile in experiments 2 and 3. Yet, future wafer-scale GPU
design should consider the other factors (e.g., yields at particular
process size) that may affect tile size selection.

A more detailed performance metrics analysis reveals that if our
configurations are used, the inter-GPU communication bandwidth
is not a major performance bottleneck. Instead, the HBM band-
width and the number of hops (switch latency and switch queueing
latency) are the critical limiting factors for the overall wafer perfor-
mance. In MCM-GPU systems, we improve performance mainly by
reducing inter-GPU traffic; but in wafer-scale GPUs, reducing hops
becomes a major considering factor.

Performance vs. tile counts. Our next question is whether
current workloads have kernels that utilize the whole wafers. What
if we use only a portion of the wafer to run kernels?

As we analyze performance across tile sizes ranging from 1 × 1
to 7 × 7, nearly all benchmarks show improvement before reaching
3 × 3 (see Figure 4). This improvement is due to increased compute
resources and memory bandwidth associated with larger tile counts.
For instance, since 3 × 3 tiles provide nine times the resources of
1 × 1 tiles, some benchmarks (e.g., FFT, I2C, PR) achieve nearly
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Figure 4: Normalized speedup when using different numbers
of tiles on each kernel (normalized to only using a single tile).
The results suggest that different benchmarks have different
saturation points.

a ninefold performance boost, while others (e.g., FIR, ReLU, SC)
exhibit a speedup of 5-9 times.

However, most kernels’ performance improvement plateauswhen
using tile sizes larger than 3 × 3, revealing the limited scalability of
these workloads. The increase in communication costs offsets the
gains in computation capacity.

A few outlier benchmarks (e.g., MT, SPMV, and S2D) only scale
their performance up to 2 × 2 tiles or fail to scale entirely (S2D).
It is no coincidence that these benchmarks align with those that
consistently benefit from larger tiles (see Figure 3). Their substantial
inter-GPU communication demands prevent them from leveraging
additional computing resources effectively.

This experiment reveals a unique challenge for wafer-scale GPUs:
strategically using fewer resources can enhance performance. More-
over, there isn’t a one-size-fits-all solution. The optimal approach
depends on the specific benchmark, algorithm, kernel implementa-
tion, and input size, which indicates the necessity of system-level
scheduling to fully utilize the power of wafer-scale GPUs.

Performance vs. pipeline organization. As demonstrated
above, kernels cannot scale to the whole wafer. Given a workload
with multiple kernels, a natural solution is to implement a software-
level pipeline that allows the kernels to execute concurrently on
different regions of the wafer. However, exhaustively searching all
possible zoning and pipelining possibilities is a finite but NP-hard
problem.We cannot try all combinations of tiles assignments. There-
fore, future designs need to find proper heuristics for proper zoning
and pipelining. In the third experiment, we consider four different
configurations and compare their performance using the whole
wafer as a single GPU (unified GPU). Using the experiment, we
demonstrate how different zoning and pipelining schemes impact
performance.

For most pipeline configurations (CF1, CF2, CF3), we observe
that performance can significantly improve over the unified GPU
configuration. For example, CF1 improves performance by 1.24×.
While our manual performance improvement attempts (CF2, CF3)
fail to improve performance over the naive design (CF1), a bad
design (CF4) can significantly slow down the performance by 0.59×.
This experiment reveals that a proper pipeline organization can
significantly impact the performance of a wafer-scale GPU, which is
a problem not seen in traditional multi-GPU or MCM-GPU systems.

4 Discussion
Wafer-scale GPU is a promising method for meeting the ever-
growing demand for computing power. Massive computing tasks,
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Figure 5: Simulation results for 2D convolutionwith different
pipeline configuration.

such as Large Language Model training and large-scale scientific
computing applications, urgently demand unprecedented parallel
computing powers. Although traditional multi-GPU systems pro-
vide massive farms of GPU chips for enough computational power
across racks of servers, the low bandwidth and high communica-
tion latency still significantly hinder the efficient leverage of the
computational power. Thanks to the emerging package-level net-
work technologies, it is now possible to connect multiple GPU chips
on an interposer, which scales up to whole wafers, addressing the
drawbacks of traditional multi-GPU systems.

Compared with MCM GPUs or other solutions, Wafer-scale GPU
has advantages. In traditional multi-GPU systems, the communi-
cation between GPUs needs to pass the off-chip networks (e.g.,
PCIe, NVLink), and the inter-GPU communication becomes very
expensive. The package-level network technology converts the ma-
jority of inter-GPU communication to intra-GPU communication.
Wafer-scale GPU also brings large-size on-chip memory. Compared
with traditional GPUs, wafer-scale GPUs have a hundred times
larger on-chip memory size compared with MCM-GPUs. This gives
wafer-scale GPU enough space to place data each time and reduces
communication with external memory storage. All of them save
communication costs and speed up computation.

The wafer-scale GPU possesses distinctive features, demanding
reconsideration of the GPU architecture, system, and software de-
sign. All the challenges are rooted in the nature of the large scale
of wafer-scale GPUs. Below, we list unaddressed wafer-scale GPU
research challenges at each level.

Architecture-level challenges.

• As seen in Section 2.1, what should be an optimal tile size
that balances computing capability and manufacturing cost?

• What degree of memory consistency and cache coherency is
required and practical? How can we efficiently implement
the desired level of consistency and coherency?

• How page fault and page migration can be handled in such
a massive device to reduce communication and latency?

• Should we have the same tiles or slightly different tiles across
the wafer? E.g., should central tiles have more memory and
less computing power?

• If we can integrate other devices (e.g., CPUs, FPGAs, ASICs)
on the wafer, what and where should we integrate?

• How can we tailor the package-level network to support
the massive, long-distance communication requirement? Is
optical communication a good solution? If so, how should
electric and optical communication collaborate?

System-level challenges.

• As demonstrated in Section 2.2, how can we estimate the
performance of the application if a certain number of tiles
are assigned? Given a computing job, how can we allocate
the optimal number of tiles (and the right shape)?

• Where should we place the compute thread and memory
pages to minimize data movement? How to maintain bal-
anced computational load across CUs while adhering to data
locality constraints?

• If we assume the wafer-scale GPU is too large to be used
by one user, how do we schedule users’ tasks on the tiles to
maximize throughput while balancing fairness and service-
level objectives (SLOs)?

• If we allow multiple users to share the wafer-scale GPU, how
can we ensure their jobs are properly isolated and there are
no security vulnerabilities?

Software-level challenges.

• What are the representative applications for wafer-scale
GPUs? A new benchmark suite may be required.

• Automatic code partitioning, scheduling, and memory place-
ment optimizations become significantly more complex at
the wafer scale. Compilers must be aware of tile locations,
interconnect constraints, and potential faults.

• How to design a user-friendly programming model? Pro-
gramming GPU has already been a challenge for program-
mers because programmers must consider how computing
tasks map to hardware resources. Wafer-scale GPUs create
many more possibilities and may require more effort for pro-
grammers in planning. Therefore, a tailored, user-friendly
programming model (e.g., pipeline-based model) for wafer-
scale GPUs.

5 Conclusion
Wafer-scale GPU technology is a promising solution to the multi-
GPU performance scalability issue, as it replaces the slow off-chip
interconnect with the high-speed on-wafer network. However, to
harness the power of wafer-scale GPUs, more architecture-level
research is needed.

This paper highlighted potential research directions related to
wafer-scale GPU system design, including 1) hardware organiza-
tion, 2) system-level schedule, and 3) software-level adaptation. By
conducting simulation-based architecture design space exploration
using three experiments, we concluded that wafer-scale GPU de-
sign has unique challenges that cannot be addressed with solutions
tailored for traditional multi-GPU systems or MCM-GPU devices.
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