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Abstract—Deployers of cloud storage and iterative processing
systems typically have to deal with either dollar budget constraints
or throughput requirements. This paper examines the question of
whether such cloud storage and iterative processing systems are
more cost-efficient when scheduled on a COTS (scale out) cluster
or a single beefy (scale up) machine. We experimentally evaluate
two systems: 1) a distributed key-value store (Cassandra), and 2)
a distributed graph processing system (GraphLab). Our studies
reveal scenarios where each option is preferable over the other.
We provide recommendations for deployers of such systems to
decide between scale up vs. scale out, as a function of their dollar
or throughput constraints. Our results indicate that there is a need
for adaptive scheduling in heterogeneous clusters containing scale
up and scale out nodes.

I. INTRODUCTION

Today’s public clouds offer a bewildering array of choices for
compute instances. The compute instances offered by public
clouds such as AWS, Microsoft Azure, Google Compute En-
gine, as well as by private clouds, cover a large range in terms
of their capacity (CPU, RAM, and storage) and associated costs.
For instance, AWS offers virtualized instances ranging from
the wimpy and cheap—m3.medium offers 1 CPU, 3.75 GB of
RAM, and 1 x 4 GB SSD of storage for $0.07 per hour—to
the beefy and expensive—i2.8xlarge with 32 CPUs, 244 GB of
RAM and 8 x 800 GB of storage for $6.82 per hour.

This makes it challenging for deployers to reason about which
instances are the best for their individual application. In fact,
deployers are often faced with dollar budget caps or minimum
throughput requirements for their applications. They have to
choose between wimpy and beefy nodes by relying on coarse-
grained suggestions [1]. Moreover, the type of application
highly influences the choice of machines. Storage systems
tend to choose memory- and storage-optimized machines while
computation-intensive systems may choose machines with fast
CPUs. Further, we are far from knowing how to schedule
such applications dynamically on a highly heterogeneous cluster
containing both wimpy and beefy machines.

In this paper, we choose two typical applications for cloud
storage and computation systems: 1) Apache Cassandra [17],
the most popular open-source distributed key-value store, and
2) GraphLab [18], a popular open-source distributed graph
processing system. We quantify their performance on two types
of clusters: a COTS or scale out cluster infrastructure with
several relatively wimpy machines, and a scale up option with
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one beefy machine. The primary metric for this comparison
is a normalized metric called cost-efficiency, i.e., the ratio of
performance to dollar cost. In order to retain our focus on
performance, we defer orthogonal issues such as fault-tolerance.

For our results to be generalizable across different infras-
tructures, we first perform a linear regression analysis of the
costs offered by the three biggest providers of public clouds:
AWS [2], Microsoft Azure [5], and Google Compute Engine
(GCE) [4]. This allows us to derive for the operational cost of
a machine with arbitrary specifications. We then apply these
cost functions while running our experiments on two clusters:
Emulab [3] as the scale out cluster, and a local cluster at Illinois
named Mustang for scale up.

Unlike previous studies on Hadoop which found scale up
generally preferable for small jobs [7], our experiments find
that under some scenarios scale out is the more preferable
option in Cassandra and GraphLab. We provide a series of
recommendations for deployers of cloud systems who may be
faced with either a dollar budget limit or a minimum throughput
requirement, allowing them to choose scale up or scale out.

Finally, we explore implications for applications that would
like to use a heterogeneous mix of machines, i.e., a few scale
up machines mixed with a few scale out machines. We believe
there is significant room for innovation in adaptive scheduling
techniques in heterogeneous cluster.

II. EXPERIMENT SETUP

We collected the hourly costs of instances from three public
cloud providers on May 11th, 2014: AWS, Microsoft Azure,
and Google Compute Engine. We performed linear least squares
regression for each provider. Cost of cloud providers grows
linearly with resource quantity, and this motivates our choice
of the linear model. This enables us to derive cost models
for instances as a linear combination of three components: i)
number of CPUs times the GHz, ii)) RAM (GB), and iii) storage
(with separate cost functions for hard disk vs. SSD).

Table 1 shows the per-unit costs for each of the above three
components. Since Azure and GCE do not provide SSD pricing,
we use industry rules of thumb to derive SSD cost [14].

We performed our experiments on three environments: i) the
Emulab PC3000 and D170 machines over a 100 Mbps Ethernet
for scale out; ii) a local machine called Mustang for scale up,
and iii) a heterogeneous local cluster called Phoenix with VMs
for Cassandra, and Emulab for GraphLab. The specifications
of these machines are listed in Table II, along with their
component-wise costs for three providers, based on Table I.



TABLE I: Component unit price for 3 providers

$/GHz $/GB $/TB (HDD, SSD)
AWS (HDD, SSD) | (0.0141, 0.0085) | (0.0106, 0.0208) | 0.10,0.20
Azure 0.0302 0.0181 (0.10,0.97)
GCE 0.0442 0.0101 (0.06,0.56)

TABLE II: Clusters/single node used in our experiments, and
their costs for the three providers from Table 1.

| Basic spec | Emulab PC3000 | Emulab D710 | Emulab D820 | Phoenix(S) | Phoenix(L) | Mustang

4 cores
2.4GHz

1 core,
3 GHz

32 cores,
2.2 GHz

4 core,
2.8GHz

1 core,
2.8GHz

4 x 8 cores,
2.2GHz

CPU

| Memory | 2GB | 1268 | 12868 | 268 | sGB | 128 GB

| Dpisk | 292.GB | 750GB | 61068 | 40GB | 40GB

| AWS cost | $0.00 | s0.34 | $2.73 | $0.06 | 027 | $346

| Azure cost | 5015 | so.s8 | 482 | s0.12 | 049 | $5.38

\
\
| 4x240GB sSD |
\
\
\

| GCE cost | $0.17 | 5059 | s4.64 | 50.14 | 5057 | s4.94

IITI. KEY-VALUE STORE EXPERIMENTS

To evaluate the performance of a key-value store under both
scale up and scale out environment key-value store, we inject
queries from multiple YCSB [10] client threads to both a scale
out cluster and a running Cassandra. The workloads consist of
50% read and 50% write operations and follow a Zipf popularity
distribution. The results are collected from a workload of 1
million operations on a 1 GB database. For scale up setting
we assume the server is capable of storing the dataset used by
any given workflow. The requests are initiated by client threads
running on another disjoint but similar machine using the same
network setting.

In order to provide a deeper perspective of how hardware
setting and workload impact the performance of a key-value
store, we vary the number of client threads (up to 96 threads)
and the number of servers in the scale out cluster (up to 16
servers). The cost of a given workload is calculated as the total
price (in dollars) spent over a million operations. For a real
cluster, the throughput would be calculated from a long-term
average. Cost-efficiency is computed as the throughput of the
workload divided by the hourly cost of the cluster.

A. Scale out VS. Scale up

In this section we explore the performance of a key-value
store under both scale up and scale out settings. Fig. la plots
the one-hour cost of renting a scale up machine and scale out
cluster of 3 different sizes based on AWS pricing discussed in
Section 2. As the size of scale out cluster doubles, the cost
doubles as well. Fig. 1b plots the throughput of Cassandra
under workloads with different intensities (light workload using
4 client threads, medium workload using 16 client threads and
intense workload using 64 threads), with different number of
machines in the cluster. Fig. 1b indicates that in both scale out
and scale up settings, increasing the number of client threads
improves storage throughput, provided that CPU utilization does
not exceed 100%. For scale out settings, the throughput also
scales linearly with the number of machines in the cluster. The
scale up machine produces a significantly higher throughput
than scale out under all workload intensities, irrespective of
cluster size.

Fig. 1c plots the cost-efficiency of two settings. From Fig.
Ic we can conclude that scaling out with a small number of

machines has a higher cost-efficiency under light workload.
However, the scale out cluster become less competitive in cost-
efficiency when the cluster size grows. This is because the
growth of the throughput is exceeded by the growth of cluster
cost. Under intense workload, the scale up cluster always shows
a higher cost efficiency.

Fig. 2a shows while the number of clients is less than 32, a
small size cluster (4 nodes) achieves higher cost efficiency than
the scale up machine. However, when the workload is intensive,
scaling up significantly outperforms scaling out. To find out the
impact of the number of queries on Cassandra’s cost efficiency,
we present experimental results demonstrated in Fig. 2b. The
results show no significant difference as the number of queries
is varied.

Based on this data, we present our recommendations in Table
III for applications that are either constrained by their total
budget, or has minimum throughput requirements. For each
of scenarios, we consider which choices of scale up vs. scale
out configurations first meets the constraint. Then among these,
we select option which maximizes the cost-efficiency, i.e., the
throughput per dollar. Scale up is always preferable under
intense workload for both constraints. This is because of the
low server cost resulting from short run time of workload and
the 10 times higher throughput offered by the scale up server. A
scale out cluster with a small number of machines offers higher
cost efficiency under light workload (Fig. 1c). Scale-up server
has lower cost efficiency under such workload. This is due to
the fact that its high CPU power is not being fully utilized
but the hardware configuration generates a higher cost. Thus
we conclude that when low throughput requirement is needed,
scale out is preferable under budget constraint. Otherwise, scale
up is preferred due to its high cost efficiency.

TABLE III: Cassandra: Scale up vs Scale out Recommendations
for Constrained Users

Budget-constrained Min throughput requirement
If(low throughput requirement)

Scale out with small number of nodes

Scale out with

Small Jobs small number of nodes | Else
Scale up
Large jobs | Scale up Scale up

B. Heterogeneous cluster

Cassandra assigns multiple virtual nodes, called (vnodes)
to distribute the keyspace more evenly across servers. In this
section we discuss the performance of Cassandra under het-
erogeneous environment with the cluster composed of wimpy
and beefy machines. Specifically, we examine the impact of
Cassandra’s vnode settings on cluster performance. We further
extend our experiment to discover the relationship between
optimized vnode settings and the price of machines of different
configurations. Finally, we perform an experiment to explore
the strategies for users constructing heterogeneous cluster with
a fixed budget.

The test machines we used for heterogeneous cluster are
Phoenix virtual machines with two configurations: Phoenix(L)
and Phoenix(S). Phoenix(L) has 4 times the CPU power and
memory of Phoenix(S). Based on the linear pricing model
discussed in Section 2 (see Table II), the cost of Phoenix(L)
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compared to Phoenix(S) is 4:1. For experiments of hetero-
geneous cluster, the three major parameters we vary are the
number of client threads, the vnode ratio (computed as the
ratio of the number of vnodes in one wimpy machine to the
number of vnodes in one beefy machine), and the machine ratio
(computed as the ratio of the number of beefy machines to the
number of wimpy machine in the cluster).

Fig. 3a shows the cost efficiency of heterogeneous cluster
with 4, 16 and 64 client threads injecting requests respectively.
The vnode ratio of the wimpy machine to the beefy machine
is set to 1:4 and the total cluster price is fixed. We observe
that under any workload, cost efficiency of the cluster grows
significantly when the first beefy node is added. Thereafter,
adding further scale of nodes yields lower marginal benefit.
This is because a beefy machine stores more data than a wimpy
machine based on the vnode setting and the former can serve

queries locally. From Fig. 3a we also discovered that for a given
cost, a homogeneous cluster of beefier machines (machine ratio
0:16) produces a better throughput than a cluster with wimpier
machines (machine ratio 4:0).

Fig. 3b shows the cost-efficiency of a heterogeneous cluster
varied by vnode ratio and workload. The cluster contains 1
beefy machine and 12 wimpy machines. We can observe from
the plot that when the workload is relatively small, increasing
the number of vnodes in beefy machines (which indicates a
larger portion of Cassandra’s key space) increases cost- effi-
ciency of the entire cluster. Such improvement is not exhibited
under heavier workload using 16 threads and 64 threads. This
is because as the vnode ratio grows, the beefy machine(s) in the
cluster are likely to reach a CPU utilization of 100% quickly
under intense load and thus become the bottleneck for the entire
system. Fig. 4a and 4b further illustrate this fact by showing

I SealeOut(4thd)  DEREEE Scale Out(16thd) ScaleOut (64thd)
------ ScaleUp(16thd) === ScaleUp(64thd)
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a positive correlation between the vnode ratio and the system
throughput under light workload and a negative correlation
under intense workload, regardless of the ratio of the number
of beefy machines to wimpy machines in the system.

Based on these experiments we found no clear relationship
between the optimized vnode ratio and the price of a machine.
Rather, we can conclude that when users are choosing the vnode
ratio of the heterogeneous cluster, the ratio should be as high
as possible as long as the beefy node does not cause CPU
utilization to cross 100%. For a cluster with fixed price, the
first beefy machine is essential to improve the cost efficiency
of the entire cluster, but adding further machines has decreasing
marginal benefit.

IV. GRAPH PROCESSING EXPERIMENTS

We ran the GraphLab [18] distributed graph processing
engine on the scale out cluster and on the scale up machine
separately. We consider five types of graph benchmarks: i) Al-
ternating least squares (ALS) [23], a powerful user recommen-
dation algorithm, ii) Directed Triangle Count, iii) Connected
Component Count, iv) Single Source Shortest Path (SSSP), and
v) Page Rank with 10 iterations. The benchmarking job was run
on four graphs (shown in Table IV): i) a small Netflex dataset,
i1) Pokec [22] social network from Slovakia, iii) a graph from
the LiveJournal [8] blog community of 10 million members,
and iv) a Twitter graph [15].

TABLE IV: Real-world Graphs Considered in our Experiments

Graph Input [V |E|

Netflix 42M 0.09M | 3.8M
Poket 404M 1.6M 30M
LiveJournal 1030M 4.8M 68M
Twitter 6GB 41.6M | 1.5G

A. Scale out Vs. Scale up

In this section, we compare two scale out clusters (PC3000
cluster and D710 cluster on Emulab) vs. a single scale up
machine (Mustang with 32 cores and 128GB RAM). Due to
space constraints, and because the trends and conclusions are
similar for many combinations, we only present PageRank
results on two graphs using the AWS cost function.

Fig. 5 shows the raw throughput, total cost and cost-efficiency
of running PageRank on 1 GB LiveJournal and 6 GB Twitter
graph respectively.

For a small job (Fig. 5a - 5c), the throughput scales nonlin-
early on D710 but linearly on PC3000 scale out cluster as the
cluster size grows. D710 cluster’s throughput growth is limited
by some certain stages of graph processing where only one core
per machine is used (e.g., only one core is used for parsing
input). However, the throughput of PC3000 cluster, which only
has one core per machines, scale linearly. Moreover, for D710
cluster, its throughput growth is limited by The throughput The
4-D710 cluster has similar throughput as the scale up machine
since they have the same number of cores (scale up machine
has 16 cores and 4-D710 cluster has 4 x 4 cores). The scale
out cluster which parses data in parallel is faster than scale up.
PC3000 scale out cluster performs worse than the single scale
up machine. One reason is that PC3000 (scale out) has only
one core and it is not the optimal configuration for GraphLab.
Another reason is that the memory of PC3000 (scale out) cluster
is not large enough to hold the entire graph [13]. For a large job
(Fig. 5d - 5f), GraphLab could not load the graph at all kinds
of PC-3000 clusters and 4 or 8-D710 cluster. PageRank on the
Twitter graph only works well on a 16-D710 cluster. Distributed
graph processing on multiple machines requires more memory
than on a single machine, since some vertices of the graph need
to be replicated among machines [18]. So a scale out cluster
with a small number of machines may suffer out-of-memory
error and not be able to load a large graph.

For cost in Fig. 5b, it is interesting that the small D710 cluster
is the cheapest when job size is small. The scale up machine
suffers from the high price per unit time, which is partly due
to the high-cost SSD. The PC3000 cluster that has the lowest
unit price, however, has a longer job completion time which
generates a higher total cost. When job size is large (Fig. Se),
since no small scale out cluster could perform the computation,
the scale up machine becomes the cheapest.

In terms of cost-efficiency, when job size is small (Fig. 5c),
the small D710 scale out cluster provides better cost-efficiency
compared to the scale up machine. One reason is that the
small job running on the scale up machine does not make
the best use of powerful and expensive CPUs. Another reason
is the expensive SSD in the scale up machine helps little in
computation-intensive jobs. When job size is large (Fig. 5f), the
large scale out cluster shows better cost-efficiency. Although the
4-D710 cluster is more expensive than the scale up machine, it
achieves a better performance on the large graph by parallelizing
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TABLE V: GraphLab: Scale up vs Scale out Recommendations
for Constrained Users

Budget-constrained
Scale out with
small number of nodes

Min throughput requirement
Scale out with

small number of nodes
Scale out

with large number of nodes

Small Jobs

Large jobs | Scale up

the computation.

Based on this data, we present our recommendations for
throughput- and budget-constrained applications in Table V.
These conclusions are different from the recommendation for
Cassandra (Table III). In particular, when the application has
a minimum throughput need, we always recommend scale out
because its throughput is higher than scale up (Figs. 5b and 5e).
For small graphs, a scale out cluster with a small number of
machines is preferable as it has comparable cost efficiency (Fig.
5c). For large graphs, a powerful scale out cluster with a large
number of machines is better as it provides sufficient memory.
On the other hand, when the constraint is budget, scale up is
preferable when processing large graphs. If graph is small, our
recommendation is generally to prefer small scale out cluster
(which have multi-core configuration) because this option incurs
lower cost in Fig. Sc.

B. Heterogeneous cluster

In this section, we study the performance and cost-efficiency
of GraphLab running in a heterogeneous cluster with one beefy
machine (D710 or D820) and a wimpy machine (PC3000) in
Figs. 6a and 6b. We run only one GraphLab process on a wimpy
machine and vary the number of processes running on a more
powerful machine. The performance of the whole cluster is
improved in Fig. 6a as we run more computation processes
in the powerful machine. This leads to an improvement of cost-
efficiency (Fig. 6b) because the beefy node in the cluster is
better utilized.

Fig. 6¢c shows the cost efficiency of PageRank running on
a cluster when the total cost is fixed. As shown in Table II, a
D710 is almost four times as expensive as PC3000. With a fixed
budget (e.g., 16 x $0.09 = $1.44), one can rent a 16-PC3000
cluster, or a 4-D710 cluster, or a heterogeneous cluster with a
mix of PC3000 and D710. We run one GraphLab process on
PC3000 and four processes on D710. The experimental result
shows that a 4-D710 cluster provides the best cost efficiency.
The reason is similar to Section IV-A. That is, PC3000’s single
core configuration is not optimal for GraphLab. Consequently,
in a heterogeneous cluster, PC3000s become stragglers which
slow down the whole computation process.

Based on these experiments, we concluded that running more
computation processes on a beefy machine in the heterogeneous
cluster improves the overall performance and cost-efficiency.
With fixed budget, the proportion of beefy machines in the
cluster should be as high as possible.

V. RELATED WORK

Analytics: MapReduce is designed for parallel data process-
ing tasks. The typical deployment leverages a cheap commodity
cluster in a scale out manner. However, it also suffers from
network bottleneck due to shuffling intermediate data. There
are also some in-memory multi-core optimized MapReduce
libraries, such as Phoenix [21], Metis [20], and TiledMapReduce
[9], which show that a scale up solution can be implemented in
a shared-memory multi-threaded manner. This tradeoff between
scale up and scale out was explicitly studied by Appuswamy
et al. [7] work. They showed that Hadoop jobs are often better
served by a scale-up server rather than a scale out cluster.

Storage: DeWitt and Gray demonstrated in [11] that with
disk and processor speed developing rapidly, parallel systems
may become a popular solution for future distributed storage
perform better and achieve better fault tolerance. Anderson et
al. [6] pointed out that the scale up machine can be inefficient
in terms of power consumption.
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Graph processing: Distributed graph processing systems
such as GraphLab [18], PowerGraph [12], Pregel [19], LFGraph
[13], perform analysis on huge graphs in parallel to improve
performance. However, they still suffer from network com-
munication overhead and redundant storage of vertices/edges.
GraphChi [16] advocates processing graph on a single server.
However, GraphChi uses disk, which makes it slower than in-
memory operations.

VI. CONCLUSION

Previous studies on scale up vs. scale out for Hadoop [7] did
not look at budget or throughput constraints. In comparison,
we conclude that for key-value stores and graph processing
systems, only two options are feasible: scale up, or small to
medium scale out clusters. The choice between scale up vs.
scale out is sensitive to the type of application (stream vs.
graph processing) and parameters such as workload intensity,
job size, dollar budget, and throughput requirements. While we
have considered throughput and completion time as the primary
metrics, similar studies can be performed on other metrics such
as latency and resource utilization. These might yield interesting
(and possibly different) conclusions.

Today, most application deployers have the opportunity to
run heterogeneous clusters consisting of both wimpy (scale out)
nodes alongside a small number of beefy (scale up) nodes.
Our study thus opens up an opportunity to innovate in adaptive
algorithms and techniques which obey the deployer constraints
such as budget or throughput.
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